Literature#
Concept#
The concept and the implemented models are described in detail in the following references:
F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K. G. F. Janssens, N. Jia, P. J. J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe. DAMASK – The Düsseldorf Advanced Material Simulation Kit for Modelling Multi-Physics Crystal Plasticity, Damage, and Thermal Phenomena from the Single Crystal up to the Component Scale Computational Materials Science, 158:420–478, 2019. doi:10.1016/j.commatsci.2018.04.030.
F. Roters, P. Eisenlohr, C. Kords, D. D. Tjahjanto, M. Diehl, and D. Raabe. DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver In O. Cazacu, editor, Procedia IUTAM: IUTAM Symposium on Linking Scales in Computation: From Microstructure to Macroscale Properties, volume 3, 3–10. Elsevier, 2012. doi:10.1016/j.piutam.2012.03.001.
Crystal Plasticity Overview#
If you are interested in Crystal Plasticity (FEM) in general you might want to read:
F. Roters, P. Eisenlohr, T.R. Bieler, and D. Raabe. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. Wiley-VCH, 2010. doi:10.1002/9783527631483.
F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications Acta Materialia, 58(4):1152–1211, 2010. doi:10.1016/j.actamat.2009.10.058.
Constitutive Models for Plasticity#
Details of the implemented constitutive models for plasticity can be found in:
T. Maiti and P. Eisenlohr. Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces Scripta Materialia, 145:37–40, 2018. doi:10.1016/j.scriptamat.2017.09.047.
D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, and J. Marian. Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations International Journal of Plasticity, 78:242–265, 2016. doi:10.1016/j.ijplas.2015.09.002.
S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe. A crystal plasticity model for twinning- and transformation-induced plasticity Acta Materialia, 118:140–151, 2016. doi:10.1016/j.actamat.2016.07.032.
D. Cereceda, M. Diehl, F. Roters, P. Shanthraj, D. Raabe, J.M. Perlado, and J. Marian. Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal tungsten strength GAMM Mitteilungen, 38(2):213–227, 2015. doi:10.1002/gamm.201510012.
C. Reuber, P. Eisenlohr, F. Roters, and D. Raabe. Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments Acta Materialia, 71:333–348, 2014. doi:10.1016/j.actamat.2014.03.012.
Christoph Kords. On the role of dislocation transport in the constitutive description of crystal plasticity. PhD thesis, RWTH Aachen, 2013. URL: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/4862.
N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao. Orientation dependence of shear banding in face-centered-cubic single crystals Acta Materialia, 60(8):3415–3434, 2012. doi:10.1016/j.actamat.2012.03.005.
Homogenization#
The following publications cover tools for large-scale simulations (using mechanical homogenization):
D.D. Tjahjanto, P. Eisenlohr, and F. Roters. A novel grain cluster-based homogenization scheme Modelling and Simulation in Materials Science and Engineering, 2010. doi:10.1088/0965-0393/18/1/015006.
P. Eisenlohr and F. Roters. Selecting a set of discrete orientations for accurate texture reconstruction Computational Materials Science, 42(4):670–678, 2008. doi:10.1016/j.commatsci.2007.09.015.
Spectral Solvers#
The spectral solvers provided with DAMASK are explained in:
P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, and D. Raabe. Spectral solvers for crystal plasticity and multi-physics simulations. Springer Singapore, 2019. doi:10.1007/978-981-10-6884-3_80.
P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials International Journal of Plasticity, 66:31–45, 2015. doi:10.1016/j.ijplas.2014.02.006.
P. Eisenlohr, M. Diehl, R.A. Lebensohn, and F. Roters. A spectral method solution to crystal elasto-viscoplasticity at finite strains International Journal of Plasticity, 46:37–53, 2013. doi:10.1016/j.ijplas.2012.09.012.
Damage and Fracture#
Details of the models for damage and fracture are outlined in:
P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, and D. Raabe. Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture Journal of the Mechanics and Physics of Solids, 99:19–34, 2017. doi:10.1016/j.jmps.2016.10.012.
P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, and D. Raabe. A phase field model for damage in elasto-viscoplastic materials Computer Methods in Applied Mechanics and Engineering, 312:167–185, 2016. doi:10.1016/j.cma.2016.05.006.
Data Storage#
The following publication covers handling of large and heterogeneous data resulting from DAMASK simulations:
M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, and F. Roters. A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations Integrating Materials and Manufacturing Innovation, 6(1):83–91, 2017. doi:10.1007/s40192-017-0084-5.
Related Work#
The following publications cite the DAMASK core publications:
S. Akhondzadeh, M. Kang, R.B. Sills, K.T. Ramesh, and W. Cai. Direct comparison between experiments and dislocation dynamics simulations of high rate deformation of single crystal copper Acta Materialia, 2023. cited By 0. doi:10.1016/j.actamat.2023.118851.
D.S. Bezverkhy and N.S. Kondratev. Application of coincidence-site lattice modification for grain boundary energy modeling In AIP Conference Proceedings, volume 2627. American Institute of Physics Inc., 2023. cited By 0. doi:10.1063/5.0115262.
M. Bignon, Z. Ma, J.D. Robson, and P. Shanthraj. Interactions between plastic deformation and precipitation in Aluminium alloys: A crystal plasticity model Acta Materialia, 2023. cited By 1. doi:10.1016/j.actamat.2023.118735.
F. Briffod, H. Hu, T. Shiraiwa, and M. Enoki. Effect of in-lath slip strength on the strain partitioning in a dual-phase steel investigated by high-resolution digital image correlation and crystal plasticity simulations Materials Science and Engineering: A, 2023. cited By 3. doi:10.1016/j.msea.2022.144413.
E. Cantergiani, I. Weißensteiner, J. Grasserbauer, G. Falkinger, S. Pogatscher, and F. Roters. Influence of Hot Band Annealing on Cold-Rolled Microstructure and Recrystallization in AA 6016 Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 54(1):75–96, 2023. cited By 1. doi:10.1007/s11661-022-06846-4.
L. Chang, Z. Miao, B. Zhou, C. Zhou, and X. He. Understanding the anisotropic tensile deformation behavior of commercially pure titanium by experiments and crystal plasticity simulations Materials Letters, 2023. cited By 0. doi:10.1016/j.matlet.2023.134095.
B. Chen, S. Hamada, W. Li, and H. Noguchi. Crystal plasticity FEM study of material and mechanical effects on damage accumulation mode of fatigue crack propagation International Journal of Fatigue, 2023. cited By 0. doi:10.1016/j.ijfatigue.2023.107683.
N. Chen, S. Hu, W. Setyawan, P.V. Sushko, and S.N. Mathaudhu. Defect substructure energy landscape in polycrystalline Al under large deformation: Insights from molecular dynamics Journal of Materials Research and Technology, 22:3340–3351, 2023. cited By 0. doi:10.1016/j.jmrt.2022.12.131.
X. Cheng, P. Cai, L. Zhang, and L. Chai. Unusual work hardening rate of a 3D gradient high purity Ti fabricated by laser surface treatment Materials Science and Engineering: A, 2023. cited By 0. doi:10.1016/j.msea.2022.144417.
C.K. Cocke, H. Mirmohammad, M. Zecevic, B.R. Phung, R.A. Lebensohn, O.T. Kingstedt, and A.D. Spear. Implementation and experimental validation of nonlocal damage in a large-strain elasto-viscoplastic FFT-based framework for predicting ductile fracture in 3D polycrystalline materials International Journal of Plasticity, 2023. cited By 0. doi:10.1016/j.ijplas.2022.103508.
B. Cui, X. Liu, I.C. Nlebedim, and J. Cui. Toughening Sm–Co sintered magnets via microstructure modification with additives Journal of Magnetism and Magnetic Materials, 2023. cited By 0. doi:10.1016/j.jmmm.2023.170434.
A. Eghtesad, Q. Luo, S.-L. Shang, R.A. Lebensohn, M. Knezevic, Z.-K. Liu, and A.M. Beese. Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations International Journal of Plasticity, 2023. cited By 0. doi:10.1016/j.ijplas.2023.103646.
T. Fischer, C.F.O. Dahlberg, and P. Hedström. Sensitivity of local cyclic deformation in lath martensite to flow rule and slip system in crystal plasticity Computational Materials Science, 2023. cited By 0. doi:10.1016/j.commatsci.2023.112106.
F.-J. Gallardo-Basile, F. Roters, R.M. Jentner, K. Srivastava, S. Scholl, and M. Diehl. Modeling Bainite Dual-Phase Steels: A High-Resolution Crystal Plasticity Simulation Study Crystals, 2023. cited By 0. doi:10.3390/cryst13040673.
S. Gao, Y. Sun, Q. Li, Z. Hao, B. Zhang, D. Gu, and G. Wang. Research on the hot tensile deformation mechanism of Ti-6Al-4 V alloy sheet based on the α + β dual phase crystal plasticity modeling Journal of Alloys and Compounds, 2023. cited By 1. doi:10.1016/j.jallcom.2022.167701.
B. Gholami Bazehhour, S. Srinivasan, C. Kale, P. Peralta, and K. Solanki. Fatigue crack growth behavior of titanium with oxygen impurities: Experiments and modeling Engineering Fracture Mechanics, 2023. cited By 0. doi:10.1016/j.engfracmech.2023.109380.
C. Grant, Y. Aboura, T.L. Burnett, P.B. Prangnell, and P. Shanthraj. Computational study of the geometrical influence of grain topography on short crack propagation in AA7XXX series alloys Materialia, 2023. cited By 0. doi:10.1016/j.mtla.2023.101798.
L. Han, T. Han, Q. Wu, S. Xu, J. Sun, and Y. Wang. Study on microstructural characterization and local stress–strain behavior of transition zone within K-TIG welded SAF2205/Q235 dissimilar joints Journal of Materials Research and Technology, 24:5119–5138, 2023. cited By 0. doi:10.1016/j.jmrt.2023.04.112.
C. Hartmann. Towards Machine Learning of Crystal Plasticity by Neural Networks Minerals, Metals and Materials Series, pages 576–583, 2023. cited By 0. doi:10.1007/978-3-031-22524-6_51.
D. Hu, N. Grilli, and W. Yan. Dislocation structures formation induced by thermal stress in additive manufacturing: Multiscale crystal plasticity modeling of dislocation transport Journal of the Mechanics and Physics of Solids, 2023. cited By 2. doi:10.1016/j.jmps.2023.105235.
P. Huang, N. Guo, W. Zhao, Q. Zhou, H. Zhang, and B. Tang. Synergistic and competitive mechanisms of plastic anisotropy in high-efficiency laser melting deposited TC11 alloy Materials Science and Engineering: A, 2023. cited By 0. doi:10.1016/j.msea.2023.145067.
J. Huber, J. Vogler, and E. Werner. Multiscale modeling of the mechanical behavior of brazed Ni-based superalloy sheet metals Continuum Mechanics and Thermodynamics, 35(1):211–229, 2023. cited By 1. doi:10.1007/s00161-022-01172-x.
H. Ji, Q. Song, W. Cai, C. Cao, Z. Lv, and Z. Liu. Episodes of single-crystal material removal mode and machinability in the micro-cutting process of superalloy Inconel-718 Journal of Materials Research and Technology, 24:2074–2085, 2023. cited By 0. doi:10.1016/j.jmrt.2023.03.125.
R. Juan, N.X. Binh, W. Liu, and J. Lian. Optimizing crystal plasticity model parameters via machine learning-based optimization algorithms In Materials Research Proceedings, volume 28, 1417–1426. Association of American Publishers, 2023. cited By 0. doi:10.21741/9781644902479-153.
M.S. Khorrami, J.R. Mianroodi, N.H. Siboni, P. Goyal, B. Svendsen, P. Benner, and D. Raabe. An artificial neural network for surrogate modeling of stress fields in viscoplastic polycrystalline materials npj Computational Materials, 2023. cited By 0. doi:10.1038/s41524-023-00991-z.
E. King, Y. Li, S. Hu, and E. Machorro. Physics-informed machine-learning model of temperature evolution under solid phase processes Computational Mechanics, 72(1):125–136, 2023. cited By 0. doi:10.1007/s00466-023-02289-9.
W. Li, M.M. Attallah, and K. Essa. Heat-assisted incremental sheet forming for high-strength materials — a review International Journal of Advanced Manufacturing Technology, 124(7-8):2011–2036, 2023. cited By 0. doi:10.1007/s00170-022-10561-0.
Y. Lin, L. Han, and G. Wang. Relationship between Σ3 Boundaries, Dislocation Slip, and Plasticity in Pure Nickel Materials, 2023. cited By 0. doi:10.3390/ma16072853.
C. Liu, F. Roters, and D. Raabe. Finite strain crystal plasticity-phase field modeling of twin, dislocation, and grain boundary interaction in hexagonal materials Acta Materialia, 2023. cited By 3. doi:10.1016/j.actamat.2022.118444.
W. Liu, J. Huang, Y. Pang, K. Zhu, S. Li, and J. Ma. Multi-scale modelling of evolving plastic anisotropy during Al-alloy sheet forming International Journal of Mechanical Sciences, 2023. cited By 0. doi:10.1016/j.ijmecsci.2023.108168.
X. Luo and M. Zaiser. A computationally efficient implementation of continuum dislocation dynamics: Formulation and application to ultrafine-grained Mg polycrystals Journal of the Mechanics and Physics of Solids, 2023. cited By 0. doi:10.1016/j.jmps.2022.105166.
Z. Luo, D. Li, A. Ojha, W.-J. Lai, C. Engler-Pinto, Z. Li, and Y. Peng. Prediction of high cycle fatigue strength for additive manufactured metals by defects incorporated crystal plasticity modeling Materials Science and Engineering: A, 2023. cited By 0. doi:10.1016/j.msea.2023.144832.
N.G. March, D.R. Gunasegaram, and A.B. Murphy. Evaluation of computational homogenization methods for the prediction of mechanical properties of additively manufactured metal parts Additive Manufacturing, 2023. cited By 1. doi:10.1016/j.addma.2023.103415.
A. Mirzakhani and A. Assempour. The effects of microstructural parameters on the tension-compression mechanical behavior of extruded Mg-XY rods using crystal plasticity finite element modeling Results in Engineering, 2023. cited By 1. doi:10.1016/j.rineng.2022.100834.
V. Mishin, I. Shishov, E. Ubyivovk, I. Kasatkin, and A. Shamshurin. Effect of Texture on Strain Localization and Crack Initiation in Polycrystalline Beryllium Under Static Tension: Experimental Study and Micromechanical Simulations Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2023. cited By 0. doi:10.1007/s11661-023-07090-0.
N. Mistry, L. Hitzler, A. Biswas, C. Krempaszky, and E. Werner. Predicting anisotropic behavior of textured PBF-LB materials via microstructural modeling Continuum Mechanics and Thermodynamics, 35(3):1185–1202, 2023. cited By 0. doi:10.1007/s00161-023-01215-x.
S. Nagarajan, R. Jain, S. Jha, V.K. Sahu, and N.P. Gurao. In-Situ Electron Backscatter Diffraction Study of Deformation Behavior of Fine-grained Dual Phase Steel Subjected to Uniaxial Tension Journal of Materials Engineering and Performance, 2023. cited By 0. doi:10.1007/s11665-023-07819-3.
A. Nascimento, S. Roongta, M. Diehl, and I.J. Beyerlein. A machine learning model to predict yield surfaces from crystal plasticity simulations International Journal of Plasticity, 2023. cited By 3. doi:10.1016/j.ijplas.2022.103507.
A. Patra, S. Chaudhary, N. Pai, T. Ramgopal, S. Khandelwal, A. Rao, and D.L. McDowell. ρ-CP: Open source dislocation density based crystal plasticity framework for simulating temperature- and strain rate-dependent deformation Computational Materials Science, 2023. cited By 0. doi:10.1016/j.commatsci.2023.112182.
Y. Pei, Y. Hao, J. Zhao, J. Yang, and B. Teng. Texture evolution prediction of 2219 aluminum alloy sheet under hydro-bulging using cross-scale numerical modeling Journal of Materials Science and Technology, 149:190–204, 2023. cited By 0. doi:10.1016/j.jmst.2022.11.037.
N. Perchikov and M. Diehl. A single-domain spectral solver for spatially nonsmooth differential equations of quasistatic solid mechanics in polar coordinates Acta Mechanica, 234(2):599–647, 2023. cited By 0. doi:10.1007/s00707-022-03406-0.
F. Pütz, N. Fehlemann, V. Göksu, M. Henrich, M. Könemann, and S. Münstermann. A data driven computational microstructure analysis on the influence of martensite banding on damage in DP-steels Computational Materials Science, 2023. cited By 1. doi:10.1016/j.commatsci.2022.111903.
D. Raabe, J.R. Mianroodi, and J. Neugebauer. Accelerating the design of compositionally complex materials via physics-informed artificial intelligence Nature Computational Science, 3(3):198–209, 2023. cited By 1. doi:10.1038/s43588-023-00412-7.
M.J. Rezaei, M. Sedighi, and M. Pourbashiri. Developing a new method to represent the low and high angle grain boundaries by using multi-scale modeling of crystal plasticity Journal of Alloys and Compounds, 2023. cited By 0. doi:10.1016/j.jallcom.2023.168844.
V. Rezazadeh, R.H.J. Peerlings, J.P.M. Hoefnagels, and M.G.D. Geers. DEFECT SENSITIVITY OF DUAL-PHASE STEELS: A STATISTICAL MICROMECHANICAL INVESTIGATION OF THE DUCTILITY LOSS DUE TO PREEXISTING DEFECTS International Journal for Multiscale Computational Engineering, 21(3):25–47, 2023. cited By 0. doi:10.1615/IntJMultCompEng.2022042361.
K. Romanov, A. Shveykin, and P. Trusov. Advanced Statistical Crystal Plasticity Model: Description of Copper Grain Structure Refinement during Equal Channel Angular Pressing Metals, 2023. cited By 0. doi:10.3390/met13050953.
P. Seibert, A. Raßloff, K.A. Kalina, J. Gussone, K. Bugelnig, M. Diehl, and M. Kästner. Two-stage 2D-to-3D reconstruction of realistic microstructures: Implementation and numerical validation by effective properties Computer Methods in Applied Mechanics and Engineering, 2023. cited By 0. doi:10.1016/j.cma.2023.116098.
S.C. Soare. Bezier5YS and SHYqp: A general framework for generating data and for modeling symmetric and asymmetric orthotropic yield surfaces European Journal of Mechanics, A/Solids, 2023. cited By 2. doi:10.1016/j.euromechsol.2022.104781.
H. Su, G. Tian, Y. Li, S. Wang, C. Xue, X. Feng, and J. Wang. Breaking the stiffness limit of Mg alloys by forming hard AlX particles and activating non-basal slip Journal of Alloys and Compounds, 2023. cited By 0. doi:10.1016/j.jallcom.2023.169249.
A. Tran and H. Lim. An asynchronous parallel high-throughput model calibration framework for crystal plasticity finite element constitutive models Computational Mechanics, 2023. cited By 0. doi:10.1007/s00466-023-02308-9.
A. Tran, K. Maupin, and T. Rodgers. Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications Journal of Computing and Information Science in Engineering, 2023. cited By 0. doi:10.1115/1.4055852.
A. Tran, P. Robbe, and H. Lim. Multi-faceted Uncertainty Quantification for Structure-Property Relationship with Crystal Plasticity Finite Element Minerals, Metals and Materials Series, pages 596–606, 2023. cited By 0. doi:10.1007/978-3-031-22524-6_53.
A. Tran, P. Robbe, and H. Lim. Multi-fidelity microstructure-induced uncertainty quantification by advanced Monte Carlo methods Materialia, 2023. cited By 0. doi:10.1016/j.mtla.2023.101705.
S.-C. Tseng, C.-C. Chiu, F. Qayyum, S. Guk, C.-K. Chao, and U. Prahl. The Effect of the Energy Release Rate on the Local Damage Evolution in TRIP Steel Composite Reinforced with Zirconia Particles Materials, 2023. cited By 1. doi:10.3390/ma16010134.
J.S. Van Dokkum, C. Bos, S.E. Offerman, and J. Sietsma. Static Unified Inelastic Model: pre- and post-yield dislocation-mediated deformation Materialia, 2023. cited By 0. doi:10.1016/j.mtla.2023.101694.
T. Vermeij, C.J.A. Mornout, V. Rezazadeh, and J.P.M. Hoefnagels. Martensite plasticity and damage competition in dual-phase steel: A micromechanical experimental–numerical study Acta Materialia, 2023. cited By 0. doi:10.1016/j.actamat.2023.119020.
C. Wang, Z.J. Li, C.Q. Ji, S.W. Gao, and Y.N. Cui. Crystal plasticity analysis of the evolutions of temperature, stress and dislocation in additively manufactured tungsten International Journal of Refractory Metals and Hard Materials, 2023. cited By 1. doi:10.1016/j.ijrmhm.2022.106041.
D. Wang, M. He, L. Jia, X. Sun, M. Xia, and X. Wang. Energy absorption characteristics of novel high-strength and high-toughness steels used for rock support Journal of Rock Mechanics and Geotechnical Engineering, 15(6):1441–1456, 2023. cited By 0. doi:10.1016/j.jrmge.2022.10.013.
Y. Xiong, J. Zhao, W. Rao, Z. Huang, G. Kang, and X. Zhang. SECONDARY ORIENTATION EFFECTS OF NI-BASED ALLOYS WITH COOLING HOLES: A STRAIN GRADIENT CRYSTAL PLASTICITY FEM STUDY [含冷却孔镍基合金次级取向效应的应变梯度晶体塑性有限元研究] Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 55(1):120–133, 2023. cited By 1. doi:10.6052/0459-1879-22-497.
T. Xu, F. Li, and X. Wang. A User-Friendly Anisotropic Yield Function for Modeling Anisotropy of BCC and FCC Sheet Metals Journal of Materials Engineering and Performance, 32(5):2370–2391, 2023. cited By 1. doi:10.1007/s11665-022-07275-5.
S. Yang, X. Tang, L. Deng, P. Gong, M. Zhang, J. Jin, and X. Wang. Interpretable Calibration of Crystal Plasticity Model Using a Bayesian Surrogate-Assisted Genetic Algorithm Metals, 2023. cited By 0. doi:10.3390/met13010166.
Z. Yang, H. Zhang, S. Ju, Z. Cui, X. Yu, and H. Liu. Mechanisms of the preferential cleavage of Ti2AlNb-based alloy: The influence of grain size and local plasticity Materials Science and Engineering: A, 2023. cited By 1. doi:10.1016/j.msea.2023.144741.
M. Zecevic, R.A. Lebensohn, and L. Capolungo. Non-local large-strain FFT-based formulation and its application to interface-dominated plasticity of nano-metallic laminates Journal of the Mechanics and Physics of Solids, 2023. cited By 3. doi:10.1016/j.jmps.2022.105187.
X. Zeng, C. Liu, C. Zhao, J. Dong, F. Roters, and D. Guan. Three-dimensional study of grain scale tensile twinning activity in magnesium: A combination of microstructure characterization and mechanical modeling Acta Materialia, 2023. cited By 0. doi:10.1016/j.actamat.2023.119043.
X. Zhang, Y. Gui, M. Lai, X. Lu, J. Gu, F. Wang, T. Yang, Z. Wang, and M. Song. Enhanced strength-ductility synergy of medium-entropy alloys via multiple level gradient structures International Journal of Plasticity, 2023. cited By 1. doi:10.1016/j.ijplas.2023.103592.
X. Zhang, J. Zhao, G. Kang, and M. Zaiser. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study International Journal of Plasticity, 2023. cited By 1. doi:10.1016/j.ijplas.2023.103553.
X.X. Zhang, P.-P. Bauer, A. Lutz, C. Wielenberg, F. Palm, W.M. Gan, and E. Maawad. Microplasticity and macroplasticity behavior of additively manufactured Al-Mg-Sc-Zr alloys: In-situ experiment and modeling International Journal of Plasticity, 2023. cited By 0. doi:10.1016/j.ijplas.2023.103659.
W. Zhou, H.-B. Wang, Q.-H. Huo, and H.-C. Cui. Investigation into Microstructure and Fatigue Properties of Complex Phase Steel Journal of Materials Engineering and Performance, 2023. cited By 0. doi:10.1007/s11665-023-08253-1.
H. Ziaei, F. Saba, Q. Liu, G. Fan, Z. Tan, D. Xiong, X. Zhang, B. Liu, and Z. Li. Employment of intragranular reaction to enhance dispersion strengthening through dispersoid proliferation in Al matrix composite Journal of Alloys and Compounds, 2023. cited By 0. doi:10.1016/j.jallcom.2023.170236.
K. Zoller, P. Gruber, M. Ziemann, A. Görtz, P. Gumbsch, and K. Schulz. Classification of slip system interaction in microwires under torsion Computational Materials Science, 2023. cited By 0. doi:10.1016/j.commatsci.2022.111839.
M. Ali, F. Qayyum, S. Tseng, S. Guk, C. Overhagen, C. Chao, and U. Prahl. Development of Hot Working Process Maps for Incompressible TRIP Steel and Zirconia Composites Using Crystal Plasticity-Based Numerical Simulations Metals, 2022. cited By 0. doi:10.3390/met12122174.
M.M. Arani, N.S. Ramesh, X. Wang, N. Parson, M. Li, and W.J. Poole. The localization of plastic deformation in the precipitate free zone of an Al-Mg-Si-Mn alloy Acta Materialia, 2022. cited By 11. doi:10.1016/j.actamat.2022.117872.
C. Bonatti, B. Berisha, and D. Mohr. From CP-FFT to CP-RNN: Recurrent neural network surrogate model of crystal plasticity International Journal of Plasticity, 2022. cited By 6. doi:10.1016/j.ijplas.2022.103430.
F. Briffod, T. Shiraiwa, M. Enoki, and S. Emura. Effect of macrozones on fatigue crack initiation and propagation mechanisms in a forged ti-6Al-4V alloy under fully-reversed condition Materialia, 2022. cited By 8. doi:10.1016/j.mtla.2022.101401.
E. Cantergiani, G. Falkinger, S. Mitsche, M. Theissing, S. Klitschke, and F. Roters. Influence of Strain Rate Sensitivity on Cube Texture Evolution in Aluminium Alloys Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 53(8):2832–2860, 2022. cited By 2. doi:10.1007/s11661-022-06710-5.
E. Cantergiani, G. Falkinger, and F. Roters. Crystal plasticity simulations of Cube in-grain fragmentation in aluminium: Influence of crystal neighbor orientation International Journal of Solids and Structures, 2022. cited By 3. doi:10.1016/j.ijsolstr.2022.111801.
C. Celada-Casero, F. Vercruysse, B. Linke, A. Smith, P. Kok, J. Sietsma, and M.J. Santofimia. Analysis of work hardening mechanisms in Quenching and Partitioning steels combining experiments with a 3D micro-mechanical model Materials Science and Engineering: A, 2022. cited By 5. doi:10.1016/j.msea.2022.143301.
S. Chakraborty, C.S. Patil, and S.R. Niezgoda. Development of the Cube Component ( 001 〈 100 〉) During Plane Strain Compression of Copper and Its Importance in Recrystallization Nucleation Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 53(2):503–522, 2022. cited By 3. doi:10.1007/s11661-021-06513-0.
B. Cui, X. Liu, C.I. Nlebedim, and J. Cui. Mechanically strengthened heterogeneous Sm-Co sintered magnets Journal of Alloys and Compounds, 2022. cited By 6. doi:10.1016/j.jallcom.2022.163937.
B. Cui, X. Liu, I.C. Nlebedim, and J. Cui. Mechanically robust high magnetic-performance Sm-Co sintered magnets through microstructure engineering Journal of Alloys and Compounds, 2022. cited By 2. doi:10.1016/j.jallcom.2022.166869.
R. Dadhich and A. Alankar. A modular spectral solver for crystal plasticity International Journal of Plasticity, 2022. cited By 4. doi:10.1016/j.ijplas.2022.103328.
C. Dichtl, D. Lunt, M. Atkinson, R. Thomas, A. Plowman, B. Barzdajn, R. Sandala, J.Q. da Fonseca, and M. Preuss. Slip activity during low-stress cold creep deformation in a near-α titanium alloy Acta Materialia, 2022. cited By 12. doi:10.1016/j.actamat.2022.117691.
M.S. Dodaran, M. Muhammad, N. Shamsaei, and S. Shao. Synergistic effect of microstructure and defects on the initiation of fatigue cracks in additively manufactured Inconel 718 International Journal of Fatigue, 2022. cited By 8. doi:10.1016/j.ijfatigue.2022.107002.
A. Eghtesad, K. Germaschewski, and M. Knezevic. Coupling of a multi-GPU accelerated elasto-visco-plastic fast Fourier transform constitutive model with the implicit finite element method Computational Materials Science, 2022. cited By 7. doi:10.1016/j.commatsci.2022.111348.
J. Escobar, B. Gwalani, M. Olszta, J. Silverstein, T. Ajantiwalay, N. Overman, W. Fu, Y. Li, L. Bergmann, E. Maawad, B. Klusemann, J.F. dos Santos, and A. Devaraj. Heterogenous activation of dynamic recrystallization and twinning during friction stir processing of a Cu-4Nb alloy Journal of Alloys and Compounds, 2022. cited By 1. doi:10.1016/j.jallcom.2022.167007.
R. Fan, Y. Wu, M. Chen, and J. Zhao. Prediction of anisotropic deformation behavior of TA32 titanium alloy sheet during hot tension by crystal plasticity finite element model Materials Science and Engineering: A, 2022. cited By 5. doi:10.1016/j.msea.2022.143137.
Q. Fang, W. Lu, Y. Chen, H. Feng, P.K. Liaw, and J. Li. Hierarchical multiscale crystal plasticity framework for plasticity and strain hardening of multi-principal element alloys Journal of the Mechanics and Physics of Solids, 2022. cited By 6. doi:10.1016/j.jmps.2022.105067.
Z.Y. Feng, H. Li, D. Zhang, X.X. Guo, Y.Q. Chen, and M.W. Fu. Multi-aspect size effect transition from micro to macroscale: Modelling and experiment International Journal of Plasticity, 2022. cited By 5. doi:10.1016/j.ijplas.2022.103364.
P. Fernandez-Zelaia, Y. Lee, S. Dryepondt, and M.M. Kirka. Creep anisotropy modeling and uncertainty quantification of an additively manufactured Ni-based superalloy International Journal of Plasticity, 2022. cited By 7. doi:10.1016/j.ijplas.2021.103177.
T. Fischer, S. Xiang, C.F.O. Dahlberg, and P. Hedström. Creep-fatigue properties of austenitic cast iron D5S with tension and compression dwell: A dislocation density-based crystal plasticity study Materials Science and Engineering: A, 2022. cited By 0. doi:10.1016/j.msea.2022.144212.
W. Fu, Y. Li, S. Hu, P. Sushko, and S. Mathaudhu. Effect of loading path on grain misorientation and geometrically necessary dislocation density in polycrystalline aluminum under reciprocating shear Computational Materials Science, 2022. cited By 8. doi:10.1016/j.commatsci.2022.111221.
N. Fujita, K. Yasuda, N. Ishikawa, M. Diehl, F. Roters, and D. Raabe. Characterizing Localized Microstructural Deformation of Multiphase Steel by Crystal Plasticity Simulation with Multi-Constitutive Law [複数の材料構成則を用いた結晶塑性解析による複相組織鋼の局所変形挙動評価] Journal of the Japan Society for Technology of Plasticity, 63(732):1–8, 2022. cited By 0. doi:10.9773/sosei.63.1.
X. Gao, H. Wang, J. Li, M. Lv, Z. Wu, Y. Li, G. Sha, and H. Ren. Cerium-alloyed ultra-high strength maraging steel with good ductility: Experiments, first-principles calculations and phase-field simulations Materials Science and Engineering: A, 2022. cited By 0. doi:10.1016/j.msea.2022.143306.
C. Gierden, J. Kochmann, J. Waimann, B. Svendsen, and S. Reese. A Review of FE-FFT-Based Two-Scale Methods for Computational Modeling of Microstructure Evolution and Macroscopic Material Behavior Archives of Computational Methods in Engineering, 29(6):4115–4135, 2022. cited By 7. doi:10.1007/s11831-022-09735-6.
N. Grilli, A.C.F. Cocks, and E. Tarleton. Modelling the nucleation and propagation of cracks at twin boundaries International Journal of Fracture, 233(1):17–38, 2022. cited By 5. doi:10.1007/s10704-021-00606-y.
N. Grilli, D. Hu, D. Yushu, F. Chen, and W. Yan. Crystal plasticity model of residual stress in additive manufacturing using the element elimination and reactivation method Computational Mechanics, 69(3):825–845, 2022. cited By 6. doi:10.1007/s00466-021-02116-z.
S. Gu, J. Zhao, T. Ma, T. Xu, and B. Yu. Modeling and analysis of grain morphology effects on deformation response based on crystal plasticity finite element method [Modellierung und Analyse der Auswirkungen der Kornmorphologie auf das Verformungsverhalten auf der Grundlage der Finiten-Elemente-Methode der Kristallplastizität] Materialwissenschaft und Werkstofftechnik, 53(7):770–780, 2022. cited By 1. doi:10.1002/mawe.202100172.
A.M. Habraken, T.A. Aksen, J.L. Alves, R.L. Amaral, E. Betaieb, N. Chandola, L. Corallo, D.J. Cruz, L. Duchêne, B. Engel, E. Esener, M. Firat, P. Frohn-Sörensen, J. Galán-López, H. Ghiabakloo, L.A.I. Kestens, J. Lian, R. Lingam, W. Liu, J. Ma, L.F. Menezes, T. Nguyen-Minh, S.S. Miranda, D.M. Neto, A.F.G. Pereira, P.A. Prates, J. Reuter, B. Revil-Baudard, C. Rojas-Ulloa, B. Sener, F. Shen, A. Van Bael, P. Verleysen, F. Barlat, O. Cazacu, T. Kuwabara, A. Lopes, M.C. Oliveira, A.D. Santos, and G. Vincze. Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations International Journal of Material Forming, 2022. cited By 9. doi:10.1007/s12289-022-01672-w.
O. Hajizad, A. Kumar, R.H. Petrov, J. Sietsma, R. Dollevoet, and Z. Li. Strain partitioning and damage initiation in a continuously cooled carbide free bainitic steel Computational Materials Science, 2022. cited By 5. doi:10.1016/j.commatsci.2021.110965.
D. Hu, N. Grilli, L. Wang, M. Yang, and W. Yan. Microscale residual stresses in additively manufactured stainless steel: Computational simulation Journal of the Mechanics and Physics of Solids, 2022. cited By 7. doi:10.1016/j.jmps.2022.104822.
T. Hussein, M. Umar, F. Qayyum, S. Guk, and U. Prahl. Micromechanical Effect of Martensite Attributes on Forming Limits of Dual-Phase Steels Investigated by Crystal Plasticity-Based Numerical Simulations Crystals, 2022. cited By 5. doi:10.3390/cryst12020155.
R. Jain, M. Yadava, N. Nayan, and N.P. Gurao. Combinatorial synchrotron diffraction-constitutive modelling-crystal plasticity simulation framework for direct metal laser sintered AlSi10Mg alloy Materialia, 2022. cited By 5. doi:10.1016/j.mtla.2022.101395.
H. Ji, Q. Song, Y. Du, Y. Zhao, and Z. Liu. Grain-scale material removal mechanisms of crystalline material micro-cutting International Journal of Mechanical Sciences, 2022. cited By 2. doi:10.1016/j.ijmecsci.2022.107671.
H. Ji, Q. Song, R. Wang, W. Cai, and Z. Liu. Evaluation and prediction of pore effects on single-crystal mechanical and damage properties of selective laser melted Inconel-718 Materials and Design, 2022. cited By 3. doi:10.1016/j.matdes.2022.110807.
A. Kanjilal, R.N. P, and P. Kumar. Size dependent creep deformation of elastically constrained compliant metallic joints Materialia, 2022. cited By 2. doi:10.1016/j.mtla.2022.101322.
B. Katzer, K. Zoller, D. Weygand, and K. Schulz. Identification of dislocation reaction kinetics in complex dislocation networks for continuum modelling using data-driven methods Journal of the Mechanics and Physics of Solids, 2022. cited By 1. doi:10.1016/j.jmps.2022.105042.
N. Kondratev, P. Trusov, A. Podsedertsev, and M. Baldin. Subgrain Coalescence Simulation by Means of an Advanced Statistical Model of Inelastic Deformation Materials, 2022. cited By 1. doi:10.3390/ma15155406.
J. Kuhn, M. Schneider, P. Sonnweber-Ribic, and T. Böhlke. Generating polycrystalline microstructures with prescribed tensorial texture coefficients Computational Mechanics, 70(3):639–659, 2022. cited By 2. doi:10.1007/s00466-022-02186-7.
G. Laschet, M. Abouridouane, M. Fernández, M. Budnitzki, and T. Bergs. Microstructure impact on the machining of two gear steels. Part 1: Derivation of effective flow curves Materials Science and Engineering: A, 2022. cited By 0. doi:10.1016/j.msea.2022.143125.
R.J. Leute, M. Ladecký, A. Falsafi, I. Jödicke, I. Pultarová, J. Zeman, T. Junge, and L. Pastewka. Elimination of ringing artifacts by finite-element projection in FFT-based homogenization Journal of Computational Physics, 2022. cited By 4. doi:10.1016/j.jcp.2021.110931.
B. Li, Z. Qin, H. Zhang, and H. Xue. The effects of laser peening treatment on the very high cycle fatigue properties for AA2024-T351 alloy using a crystal plasticity framework Engineering Fracture Mechanics, 2022. cited By 0. doi:10.1016/j.engfracmech.2022.108840.
H. Li, C. Yu, and G. Kang. Crystal plasticity modeling of the multiaxial ratchetting of extruded AZ31 Mg alloy International Journal of Plasticity, 2022. cited By 10. doi:10.1016/j.ijplas.2022.103242.
W. Li and S. Hamada. Material Parameters Dependency of Stress-Strain Curve Based on the Crystal Plasticity Finite Element Method Incorporating Non-Crystalline Shear Band Mechanism Solid State Phenomena, 335:87–92, 2022. cited By 0. doi:10.4028/p-e25as2.
W. Li, S. Hamada, and H. Noguchi. Interaction analysis between strain concentration and strain localization in cracked body Fatigue and Fracture of Engineering Materials and Structures, 45(5):1406–1420, 2022. cited By 3. doi:10.1111/ffe.13668.
W. Li, S. Hamada, and H. Noguchi. Material index for strain localization susceptibility in cracked bodies: Examination of single-crystal Cu using crystal plasticity finite element method Fatigue and Fracture of Engineering Materials and Structures, 45(11):3137–3153, 2022. cited By 1. doi:10.1111/ffe.13803.
Y. Li, H. Zhang, X. Shang, M. Liu, S. Zhao, and Z. Cui. A multiscale investigation on the preferential deformation mechanism of coarse grains in the mixed-grain structure of 316LN steel International Journal of Plasticity, 2022. cited By 11. doi:10.1016/j.ijplas.2022.103244.
C. Liu, A. Davis, J. Fellowes, P.B. Prangnell, D. Raabe, and P. Shanthraj. CALPHAD-informed phase-field model for two-sublattice phases based on chemical potentials: η-phase precipitation in Al-Zn-Mg-Cu alloys Acta Materialia, 2022. cited By 8. doi:10.1016/j.actamat.2021.117602.
H. Ma, Y. Li, H. Zhang, Q. Li, F. Chen, and Z. Cui. A virtual laboratory based on full-field crystal plasticity simulation to characterize the multiscale mechanical properties of AHSS Scientific Reports, 2022. cited By 3. doi:10.1038/s41598-022-09045-8.
L. Mei, X. Guo, and K. Jin. Characterization of Mechanical Property Degradation of Ion-Irradiated Materials Frontiers in Materials, 2022. cited By 0. doi:10.3389/fmats.2022.849209.
M. Men and B. Meng. Crystal Plasticity Simulation of Yield Loci Evolution of SUS304 Foil Materials, 2022. cited By 0. doi:10.3390/ma15031140.
J.R. Mianroodi, S. Rezaei, N.H. Siboni, B.-X. Xu, and D. Raabe. Lossless multi-scale constitutive elastic relations with artificial intelligence npj Computational Materials, 2022. cited By 8. doi:10.1038/s41524-022-00753-3.
J.R. Mianroodi, P. Shanthraj, C. Liu, S. Vakili, S. Roongta, N.H. Siboni, N. Perchikov, Y. Bai, B. Svendsen, F. Roters, D. Raabe, and M. Diehl. Modeling and simulation of microstructure in metallic systems based on multi-physics approaches npj Computational Materials, 2022. cited By 5. doi:10.1038/s41524-022-00764-0.
T. Mánik, H.M. Asadkandi, and B. Holmedal. A robust algorithm for rate-independent crystal plasticity Computer Methods in Applied Mechanics and Engineering, 2022. cited By 2. doi:10.1016/j.cma.2022.114831.
T. Mäkinen, A. Zaborowska, M. Frelek-Kozak, I. Jóźwik, Ł. Kurpaska, S. Papanikolaou, and M.J. Alava. Detection of the onset of yielding and creep failure from digital image correlation Physical Review Materials, 2022. cited By 0. doi:10.1103/PhysRevMaterials.6.103601.
S. Niewczas, M. Sitko, and L. Madej. Influence of the Grain Boundary Curvature Model on Cellular Automata Static Recrystallization Simulations Key Engineering Materials, 926 KEM:1977–1985, 2022. cited By 1. doi:10.4028/p-2v2esd.
T. Oya and N. Araki. A novel multiscale computational methodology for numerical material testing based on finite element polycrystal model Materials Today Communications, 2022. cited By 0. doi:10.1016/j.mtcomm.2022.104953.
F. Qayyum, M. Umar, V. Elagin, M. Kirschner, F. Hoffmann, S. Guk, and U. Prahl. Influence of Non‐Metallic Inclusions on Local Deformation and Damage Behavior of Modified 16MnCrS5 Steel Crystals, 2022. cited By 11. doi:10.3390/cryst12020281.
A. Quadfasel and G. Hirt. Modeling of flow curves [MODELLIERUNG VON FLIESSKURVEN] Stahl und Eisen, 142(3):43–48, 2022. cited By 0. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137382032&partnerID=40&md5=9efa31518307428922724fb64272fac6.
R. Rabindran, K. Karhausen, G. Hirt, M. Teller, and S. Hojda. Procedure to implement shear evolution in fast rolling models with online capability on the example of an aluminum flat rolling process Archive of Applied Mechanics, 92(12):3465–3502, 2022. cited By 0. doi:10.1007/s00419-022-02238-7.
K.V.K. Reddy, I. Adlakha, S. Gupta, and S. Roychowdhury. Crystal Elasticity Simulations of Polycrystalline Material Using Rank-One Approximation Integrating Materials and Manufacturing Innovation, 11(1):139–157, 2022. cited By 1. doi:10.1007/s40192-022-00253-8.
M. Reiberg, C. Duan, X. Li, and E. Werner. High-temperature phase characterization of AlCrFeNiTi compositionally complex alloys Materials Chemistry and Physics, 2022. cited By 1. doi:10.1016/j.matchemphys.2021.125272.
B. Sadeghi and P. Cavaliere. CNTs reinforced Al-based composites produced via modified flake powder metallurgy Journal of Materials Science, 57(4):2550–2566, 2022. cited By 5. doi:10.1007/s10853-021-06665-9.
B. Schmidt, A. Raßloff, R. Kühne, M. Zimmermann, and M. Kästner. Experimental-Numerical Analysis of Microstructure-Property Linkages for Additively Manufactured Materials Advanced Structured Materials, 161:189–206, 2022. cited By 0. doi:10.1007/978-3-030-97675-0_7.
K. Sedighiani, K. Traka, F. Roters, D. Raabe, J. Sietsma, and M. Diehl. Determination and analysis of the constitutive parameters of temperature-dependent dislocation-density-based crystal plasticity models Mechanics of Materials, 2022. cited By 17. doi:10.1016/j.mechmat.2021.104117.
K. Sedighiani, K. Traka, F. Roters, J. Sietsma, D. Raabe, and M. Diehl. Crystal plasticity simulation of in-grain microstructural evolution during large deformation of IF-steel Acta Materialia, 2022. cited By 9. doi:10.1016/j.actamat.2022.118167.
P. Seibert, A. Raßloff, K. Kalina, M. Ambati, and M. Kästner. Microstructure Characterization and Reconstruction in Python: MCRpy Integrating Materials and Manufacturing Innovation, 11(3):450–466, 2022. cited By 4. doi:10.1007/s40192-022-00273-4.
V. Shah, K. Sedighiani, J.S. Van Dokkum, C. Bos, F. Roters, and M. Diehl. Coupling crystal plasticity and cellular automaton models to study meta-dynamic recrystallization during hot rolling at high strain rates Materials Science and Engineering: A, 2022. cited By 3. doi:10.1016/j.msea.2022.143471.
J.D. Shimanek, S.-L. Shang, A.M. Beese, and Z.-K. Liu. Insight into ideal shear strength of Ni-based dilute alloys using first-principles calculations and correlational analysis Computational Materials Science, 2022. cited By 0. doi:10.1016/j.commatsci.2022.111564.
A. Shveykin, K. Romanov, and P. Trusov. Some Issues with Statistical Crystal Plasticity Models: Description of the Effects Triggered in FCC Crystals by Loading with Strain-Path Changes Materials, 2022. cited By 2. doi:10.3390/ma15196586.
A.K. Singh, L. Kaushik, J. Singh, H. Das, M. Mondal, S.-T. Hong, and S.-H. Choi. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing International Journal of Plasticity, 2022. cited By 9. doi:10.1016/j.ijplas.2021.103184.
K. Somlo, B.H. Frodal, C.V. Funch, K. Poulios, G. Winther, O.S. Hopperstad, T. Børvik, and C.F. Niordson. Anisotropic yield surfaces of additively manufactured metals simulated with crystal plasticity European Journal of Mechanics, A/Solids, 2022. cited By 7. doi:10.1016/j.euromechsol.2022.104506.
K. Starkey and A. El-Azab. Total Lagrange implementation of a finite-deformation continuum dislocation dynamics model of mesoscale plasticity International Journal of Plasticity, 2022. cited By 1. doi:10.1016/j.ijplas.2022.103332.
T.-H. Su, S.-J. Huang, J.G. Jean, and C.-S. Chen. Multiscale computational solid mechanics: data and machine learning Journal of Mechanics, 38:568–585, 2022. cited By 0. doi:10.1093/jom/ufac037.
X. Sun, K. Zhou, S. Shi, K. Song, and X. Chen. A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction International Journal of Fatigue, 2022. cited By 14. doi:10.1016/j.ijfatigue.2022.106996.
A. Tran, T. Wildey, and H. Lim. Microstructure-Sensitive Uncertainty Quantification for Crystal Plasticity Finite Element Constitutive Models Using Stochastic Collocation Methods Frontiers in Materials, 2022. cited By 3. doi:10.3389/fmats.2022.915254.
K.V. Tran, R. Woracek, N. Kardjilov, H. Markötter, D. Abou-Ras, S. Puplampu, C. Förster, D. Penumadu, C.F.O. Dahlberg, J. Banhart, and I. Manke. Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography Materials and Design, 2022. cited By 1. doi:10.1016/j.matdes.2022.111037.
S. Tseng, F. Qayyum, S. Guk, C. Chao, and U. Prahl. Transformation of 2D RVE Local Stress and Strain Distributions to 3D Observations in Full Phase Crystal Plasticity Simulations of Dual-Phase Steels Crystals, 2022. cited By 4. doi:10.3390/cryst12070955.
X. Tu, Y. Ren, X. Shi, W. Yan, Q. Shi, Y. Shan, and C. Li. Effect of distribution characters of ferrite/bainite on deformation compatibility in dual-phase pipeline steel: Experimental and numerical study Materials Today Communications, 2022. cited By 1. doi:10.1016/j.mtcomm.2022.104923.
M. Umar, F. Qayyum, M.U. Farooq, S. Guk, M. Kirschner, G. Korpala, and U. Prahl. Exploring the Structure–Property Relationship in Spheroidized C45EC Steel Using Full Phase Crystal Plasticity Numerical Simulations Steel Research International, 2022. cited By 3. doi:10.1002/srin.202100452.
L. Vallejo-Rodriguez, M. Lindroos, T. Suhonen, J. Metsajoki, Y. Ge, T. Andersson, and A. Laukkanen. Micromechanical Modelling Of Additively Manufactured High Entropy Alloys To Establish Structure-Properties-Performance Workflow In World PM 2022 Congress Proceedings. European Powder Metallurgy Association (EPMA), 2022. cited By 0. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85160728617&partnerID=40&md5=4e2adb63301c8436917391a7ab55101a.
A. Vijay and F. Sadeghi. A crystal plasticity and cohesive element model for rolling contact fatigue of bearing steels Tribology International, 2022. cited By 0. doi:10.1016/j.triboint.2022.107607.
D. Wang, M. He, Z. Tao, A. Guo, and X. Wang. Deformation-softening behaviors of high-strength and high-toughness steels used for rock bolts Journal of Rock Mechanics and Geotechnical Engineering, 14(6):1872–1884, 2022. cited By 4. doi:10.1016/j.jrmge.2021.12.026.
L. Wang, Y. Yu, D. Hu, and W. Yan. Multiscale modeling applied to additive manufacturing. Elsevier, 2022. cited By 0. doi:10.1016/B978-0-12-823021-3.00001-4.
M. Wang, K. Zhang, and C. Chen. A mixed FFT-Galerkin approach for incompressible or slightly compressible hyperelastic solids under finite deformation Computer Methods in Applied Mechanics and Engineering, 2022. cited By 2. doi:10.1016/j.cma.2022.115092.
S. Wang, P. Li, Y. Wu, X. Liu, Q. Lin, and G. Chen. Micromechanical behavior of Ti-2Al-2.5Zr alloy under cyclic loading using crystal plasticity modeling International Journal of Fatigue, 2022. cited By 8. doi:10.1016/j.ijfatigue.2022.106890.
Y. Xiong, N. Grilli, P.S. Karamched, B.-S. Li, E. Tarleton, and A.J. Wilkinson. Cold dwell behaviour of Ti6Al alloy: Understanding load shedding using digital image correlation and dislocation based crystal plasticity simulations Journal of Materials Science and Technology, 128:254–272, 2022. cited By 1. doi:10.1016/j.jmst.2022.05.034.
A. Xu, M. Saleh, T. Wei, T. Palmer, H. Huang, and D. Bhattacharyya. Investigating the effect of helium ion irradiation on deformation behaviour of Ni-Mo-Cr alloy via in-situ micro-tensile testing Journal of Nuclear Materials, 2022. cited By 3. doi:10.1016/j.jnucmat.2022.153812.
(1) Yanagimoto, J., (1) Banabic, D., M. Banu, and (2) Madej, L. Simulation of metal forming – Visualization of invisible phenomena in the digital era CIRP Annals, 71(2):599–622, 2022. cited By 5. doi:10.1016/j.cirp.2022.05.007.
K.U. Yazar, S. Mishra, L. Kumar, S. Bahl, T.K. Kumar, and S. Suwas. Texture induced planar anisotropy of dwell fatigue response in titanium: Insights from experiments and crystal plasticity simulations International Journal of Plasticity, 2022. cited By 11. doi:10.1016/j.ijplas.2021.103140.
M. Zecevic, R.A. Lebensohn, and L. Capolungo. New large-strain FFT-based formulation and its application to model strain localization in nano-metallic laminates and other strongly anisotropic crystalline materials Mechanics of Materials, 2022. cited By 6. doi:10.1016/j.mechmat.2021.104208.
D. Zhang, H. Li, X. Guo, Y. Yang, X. Yang, and Z. Feng. An insight into size effect on fracture behavior of Inconel 718 cross-scaled foils International Journal of Plasticity, 2022. cited By 11. doi:10.1016/j.ijplas.2022.103274.
H. Zhang, X. Tang, L. Deng, F. Du, M. Zhang, J. Jin, and X. Wang. Study of size effect on anisotropic deformation behavior of rolled α-Ti sheet Materials Science and Engineering: A, 2022. cited By 2. doi:10.1016/j.msea.2022.143282.
J. Zhang, J. Li, S. Wu, W. Zhang, J. Sun, and G. Qian. High-cycle and very-high-cycle fatigue lifetime prediction of additively manufactured AlSi10Mg via crystal plasticity finite element method International Journal of Fatigue, 2022. cited By 20. doi:10.1016/j.ijfatigue.2021.106577.
R. Zhang, Z. Xu, L. Peng, X. Lai, and M.W. Fu. Intragranularly misoriented grain boundary evolution affected by local constraints and grain size in micro-scale deformation of ultra-thin metallic sheets International Journal of Plasticity, 2022. cited By 2. doi:10.1016/j.ijplas.2022.103377.
S. Zhang, L. Wang, G. Zhu, M. Diehl, A. Maldar, X. Shang, and X. Zeng. Predicting grain boundary damage by machine learning International Journal of Plasticity, 2022. cited By 14. doi:10.1016/j.ijplas.2021.103186.
X. Zhang, X. Lu, J. Zhao, Q. Kan, Z. Li, and G. Kang. Temperature effect on tensile behavior of an interstitial high entropy alloy: Crystal plasticity modeling International Journal of Plasticity, 2022. cited By 15. doi:10.1016/j.ijplas.2021.103201.
Y. Zhang, J. Li, F. Shen, J. Zheng, T. Li, W. Han, S. Münstermann, and S. Huang. Microstructure-property relationships in HPDC Aural-2 alloy: Experimental and CP modeling approaches Materials Science and Engineering: A, 2022. cited By 1. doi:10.1016/j.msea.2022.143364.
Z. Zhao, M.R. Ruiz, J. Lu, M.A. Monclús, J.M. Molina-Aldareguía, T.R. Bieler, and P. Eisenlohr. Quantifying the Uncertainty of Critical Resolved Shear Stress Values Derived from Nano-Indentation in Hexagonal Ti Alloys Experimental Mechanics, 62(5):731–743, 2022. cited By 3. doi:10.1007/s11340-021-00813-7.
Z. Zhao, L. Wang, D. Kong, P. Liu, X. He, X. Ni, L. Zhang, and C. Dong. Texture dependence on the mechanical properties of 18Ni300 maraging steel fabricated by laser powder bed fusion Materials Characterization, 2022. cited By 5. doi:10.1016/j.matchar.2022.111938.
X. Zheng, G. Liu, S. Zheng, Y. Ma, R. Yang, J. Wang, and X. Ma. 101¯2 twinning induced by the interaction between 112¯1 twin and β phase in α+β Ti alloys Acta Materialia, 2022. cited By 5. doi:10.1016/j.actamat.2022.117900.
E.A. Bonifaz and I. Watanabe. Anisotropic multiscale modelling in sae-aisi 1524 gas tungsten arc welded joints Crystals, 11(3):1–11, 2021. cited By 3. doi:10.3390/cryst11030245.
M. Boåsen, C.F.O. Dahlberg, P. Efsing, and J. Faleskog. A weakest link model for multiple mechanism brittle fracture — Model development and application Journal of the Mechanics and Physics of Solids, 2021. cited By 5. doi:10.1016/j.jmps.2020.104224.
F. Briffod, T. Shiraiwa, and M. Enoki. Micromechanical investigation of the effect of the crystal orientation on the local deformation path and ductile void nucleation in dual-phase steels Materials Science and Engineering: A, 2021. cited By 14. doi:10.1016/j.msea.2021.141933.
J. Cappola, J.-C. Stinville, M.-A. Charpagne, P.G. Callahan, M.P. Echlin, T.M. Pollock, A. Pilchak, and M. Kasemer. On the Localization of Plastic Strain in Microtextured Regions of Ti-6Al-4V Acta Materialia, 2021. cited By 28. doi:10.1016/j.actamat.2020.116492.
A. Charmi, R. Falkenberg, L. Ávila, G. Mohr, K. Sommer, A. Ulbricht, M. Sprengel, R. Saliwan Neumann, B. Skrotzki, and A. Evans. Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study Materials Science and Engineering: A, 2021. cited By 61. doi:10.1016/j.msea.2020.140154.
T.S. DE SOUSA, A. Ahadi, E. Sjögren, and D. Orlov. Peridynamic modelling of harmonic structured materials under high strain rate deformation In World Congress in Computational Mechanics and ECCOMAS Congress, volume 100, 1–11. Scipedia S.L., 2021. cited By 1. doi:10.23967/wccm-eccomas.2020.279.
A. Eres-Castellanos, J. Hidalgo, L. Morales-Rivas, F.G. Caballero, and C. Garcia-Mateo. The role of plastic strains on variant selection in ausformed bainitic microstructures studied by finite elements and crystal plasticity simulations Journal of Materials Research and Technology, 13:1416–1430, 2021. cited By 4. doi:10.1016/j.jmrt.2021.05.070.
G. Falkinger and S. Mitsche. Numerical investigation of the effect of rate-sensitivity, non-octahedral slip and grain shape on texture evolution during hot rolling of aluminum alloys Modelling and Simulation in Materials Science and Engineering, 2021. cited By 2. doi:10.1088/1361-651X/abcb4d.
T. Fischer, L. Hitzler, and E. Werner. Morphological and crystallographic effects in the laser powder-bed fused stainless steel microstructure Crystals, 2021. cited By 9. doi:10.3390/cryst11060672.
T. Fischer, S. Ulan kyzy, O. Munz, and E. Werner. Structure-property relationship of a nickel-based honeycomb sealing composite Computational Materials Science, 2021. cited By 4. doi:10.1016/j.commatsci.2020.110270.
Y. Fu, M. Lv, Q. Zhao, H. Zhang, and Z. Cui. Investigation on the size and distribution effects of O phase on fracture properties of Ti2AlNb superalloy by using image-based crystal plasticity modeling Materials Science and Engineering: A, 2021. cited By 15. doi:10.1016/j.msea.2021.140787.
F.-J. Gallardo-Basile, Y. Naunheim, F. Roters, and M. Diehl. Lath martensite microstructure modeling: A high-resolution crystal plasticity simulation study Materials, 14(3):1–20, 2021. cited By 8. doi:10.3390/ma14030691.
X. Gao, H. Wang, C. Ma, M. Lv, G. Sha, Y. Li, and H. Ren. Micromechanism involved in ultrafine grained ferrite/martensite dual phase steels strengthened by nanoscale Cu-rich precipitates Materials Science and Engineering: A, 2021. cited By 11. doi:10.1016/j.msea.2021.141522.
X. Gao, H. Wang, L. Xing, C. Ma, Y. Li, G. Sha, and H. Ren. The synergistic effects of ultrafine grains and nano-size Cu-rich precipitates on the mechanical properties of DP steels Materials Science and Engineering: A, 2021. cited By 9. doi:10.1016/j.msea.2020.140547.
N. Grilli, E. Tarleton, and A.C.F. Cocks. Coupling a discrete twin model with cohesive elements to understand twin-induced fracture International Journal of Fracture, 227(2):173–192, 2021. cited By 11. doi:10.1007/s10704-020-00504-9.
N. Grilli, E. Tarleton, and A.C.F. Cocks. Neper2CAE and PyCiGen: Scripts to generate polycrystals and interface elements in Abaqus SoftwareX, 2021. cited By 6. doi:10.1016/j.softx.2020.100651.
B. Gwalani, W. Fu, M. Olszta, J. Silverstein, D.R. Yadav, P. Manimunda, A. Guzman, K. Xie, A. Rohatgi, S. Mathaudhu, C.A. Powell, P.V. Sushko, Y. Li, and A. Devaraj. Lattice misorientation evolution and grain refinement in Al-Si alloys under high-strain shear deformation Materialia, 2021. cited By 12. doi:10.1016/j.mtla.2021.101146.
X. Huang, J. Wang, S. Zhao, Z. Yao, and C. Liu. High-resolution multiscale modeling of mechanical behavior of cold-drawn pearlitic steels Journal of Materials Research and Technology, 15:5920–5935, 2021. cited By 4. doi:10.1016/j.jmrt.2021.10.087.
C.M.A. Iftikhar, Y.L. Li, C.P. Kohar, K. Inal, and A.S. Khan. Evolution of subsequent yield surfaces with plastic deformation along proportional and non-proportional loading paths on annealed AA6061 alloy: Experiments and crystal plasticity finite element modeling International Journal of Plasticity, 2021. cited By 23. doi:10.1016/j.ijplas.2021.102956.
S. Isavand and A. Assempour. Strain localization and deformation behavior in ferrite-pearlite steel unraveled by high-resolution in-situ testing integrated with crystal plasticity simulations International Journal of Mechanical Sciences, 2021. cited By 15. doi:10.1016/j.ijmecsci.2021.106441.
S. Isavand, M. Kardan-Halvaei, and A. Assempour. Crystal plasticity modeling and experimental characterization of strain localization and forming limits in ferrite-pearlite steels International Journal of Solids and Structures, 2021. cited By 4. doi:10.1016/j.ijsolstr.2021.111205.
H. Ji, Q. Song, M.K. Gupta, W. Cai, Y. Zhao, and Z. Liu. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: A short review Journal of Advanced Manufacturing Science and Technology, 2021. cited By 1. doi:10.51393/j.jamst.2021005.
H. Ji, Q. Song, M. Kumar Gupta, W. Cai, J. Shi, and Z. Liu. Geometry-considered 3D pseudorandom grain-scale modelling for crystalline material miniature parts Materials and Design, 2021. cited By 5. doi:10.1016/j.matdes.2021.110054.
C. Jia, G. Shen, W. Chen, B. Hu, C. Zheng, and D. Li. Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach Acta Metallurgica Sinica (English Letters), 34(6):777–788, 2021. cited By 5. doi:10.1007/s40195-020-01155-4.
K.H. Khafagy, S. Datta, and A. Chattopadhyay. Multiscale characterization and representation of variability in ceramic matrix composites Journal of Composite Materials, 55(18):2431–2441, 2021. cited By 11. doi:10.1177/0021998320978445.
M. Kumar, A. Singh, and S. Mishra. Enriching mean-field self-consistent texture simulations using the full-field FFT model Materials Science and Technology (United Kingdom), 37(17):1343–1352, 2021. cited By 0. doi:10.1080/02670836.2021.2007455.
P. Kumar, T.-K. Lee, I. Dutta, Z. Huang, and P. Conway. Microstructure and Mechanical Reliability Issues of TSV Springer Series in Advanced Microelectronics, 64:71–105, 2021. cited By 1. doi:10.1007/978-981-15-7090-2_4.
R.J. Lane, A.M. Momen, M.S. Kesler, J. Brechtl, O. Rios, K. Nawaz, and R. Mirzaeifar. Developing an experimental-computational framework to investigate the deformation mechanisms and mechanical properties of Al-8Ce-10Mg alloys at micro and macroscales Materials Today Communications, 2021. cited By 5. doi:10.1016/j.mtcomm.2021.102674.
Y.Q. Li, H.M. Zhang, M.X. Liu, and Z.S. Cui. Study of the Influence of the Mixed-Grain Structure on the Microscopic Deformation Behavior of 316LN Steel Minerals, Metals and Materials Series, pages 1757–1766, 2021. cited By 1. doi:10.1007/978-3-030-75381-8_147.
Z. Li, Z. Liu, Z. Zhuang, and Y. Cui. Temperature dependent deformation localization in irradiated tungsten International Journal of Plasticity, 2021. cited By 14. doi:10.1016/j.ijplas.2021.103077.
M. Lin, C. Zimmermann, K. Wang, M. Hunkel, U. Prahl, and R. Spatschek. Modeling bainitic transformations during press hardening Materials, 14(3):1–27, 2021. cited By 1. doi:10.3390/ma14030654.
C. Liu, A. Garner, H. Zhao, P.B. Prangnell, B. Gault, D. Raabe, and P. Shanthraj. CALPHAD-informed phase-field modeling of grain boundary microchemistry and precipitation in Al-Zn-Mg-Cu alloys Acta Materialia, 2021. cited By 18. doi:10.1016/j.actamat.2021.116966.
G. Liu, H. Mo, J. Wang, and Y. Shen. Coupled crystal plasticity finite element-phase field model with kinetics-controlled twinning mechanism for hexagonal metals Acta Materialia, 202:399–416, 2021. cited By 13. doi:10.1016/j.actamat.2020.11.002.
H. Liu and Y.C. Shin. A crystal plasticity finite element-based approach to model the constitutive behavior of multi-phase steels Archives of Civil and Mechanical Engineering, 2021. cited By 4. doi:10.1007/s43452-021-00226-2.
W. Liu, J. Huang, J. Liu, X. Wu, K. Zhang, and A. Huang. Experimental and crystal plasticity modelling study on the crack initiation in micro-texture regions of Ti-6Al-4V during high cycle fatigue tests International Journal of Fatigue, 2021. cited By 17. doi:10.1016/j.ijfatigue.2021.106203.
W. Liu and Y. Pang. A multi-scale modelling framework for anisotropy prediction in aluminium alloy sheet and its application in the optimisation of the deep-drawing process International Journal of Advanced Manufacturing Technology, 114(11-12):3401–3417, 2021. cited By 2. doi:10.1007/s00170-021-07060-z.
J.G. Lopeza and L.A.I. Kestensa. A multivariate grain size and orientation distribution function: Derivation from electron backscatter diffraction data and applications Journal of Applied Crystallography, 54:148–162, 2021. cited By 2. doi:10.1107/S1600576720014909.
J.R. Mianroodi, N. H. Siboni, and D. Raabe. Teaching solid mechanics to artificial intelligence—a fast solver for heterogeneous materials npj Computational Materials, 2021. cited By 39. doi:10.1038/s41524-021-00571-z.
S.A.H. Motaman and C. Haase. The microstructural effects on the mechanical response of polycrystals: A comparative experimental-numerical study on conventionally and additively manufactured metallic materials International Journal of Plasticity, 2021. cited By 11. doi:10.1016/j.ijplas.2021.102941.
S. Nagarajan, R. Jain, and N.P. Gurao. Microstructural characteristics governing the lattice rotation in Al-Mg alloy using in-situ EBSD Materials Characterization, 2021. cited By 8. doi:10.1016/j.matchar.2021.111405.
K. Nguyen, M. Zhang, V.J. Amores, M.A. Sanz, and F.J. Montáns. Computational modeling of dislocation slip mechanisms in crystal plasticity: A short review Crystals, 11(1):1–29, 2021. cited By 10. doi:10.3390/cryst11010042.
S. Papanikolaou and M.J. Alava. Direct detection of plasticity onset through total-strain profile evolution Physical Review Materials, 2021. cited By 2. doi:10.1103/PhysRevMaterials.5.083602.
C.S. Patil, S. Chakraborty, and S.R. Niezgoda. Comparison of full field predictions of crystal plasticity simulations using the Voce and the dislocation density based hardening laws International Journal of Plasticity, 2021. cited By 12. doi:10.1016/j.ijplas.2021.103099.
F. Qayyum, S. Guk, R. Kawalla, and U. Prahl. On attempting to create a virtual laboratory for application-oriented microstructural optimization of multi-phase materials Applied Sciences (Switzerland), 11(4):1–25, 2021. cited By 11. doi:10.3390/app11041506.
F. Qayyum, S. Guk, and U. Prahl. Studying the damage evolution and the micro-mechanical response of x8crmnni16-6-6 trip steel matrix and 10 Crystals, 2021. cited By 11. doi:10.3390/cryst11070759.
F. Qayyum, S. Guk, S. Prüger, M. Schmidtchen, I. Saenko, B. Kiefer, R. Kawalla, and U. Prahl. Investigating the local deformation and transformation behavior of sintered X3CrMnNi16-7-6 TRIP steel using a calibrated crystal plasticity-based numerical simulation model International Journal of Materials Research, 111(5):392–404, 2021. cited By 0. doi:10.1515/ijmr-2020-1110506.
F. Qayyum, M. Umar, S. Guk, M. Schmidtchen, R. Kawalla, and U. Prahl. Effect of the 3rd dimension within the representative volume element (Rve) on damage initiation and propagation during full-phase numerical simulations of single and multi-phase steels Materials, 14(1):1–20, 2021. cited By 16. doi:10.3390/ma14010042.
A. Raßloff, P. Schulz, R. Kühne, M. Ambati, I. Koch, A.T. Zeuner, M. Gude, M. Zimmermann, and M. Kästner. Accessing pore microstructure–property relationships for additively manufactured materials GAMM Mitteilungen, 2021. cited By 8. doi:10.1002/gamm.202100012.
A. Raßloff, P. Schulz, R. Kühne, M. Ambati, I. Koch, A.T. Zeuner, M. Gude, M. Zimmermann, and M. Kästner. Experimental-numerical analysis of microstructure-property linkages for additively manufactured materials In Procedia Structural Integrity, volume 38, 4–11. Elsevier B.V., 2021. cited By 0. doi:10.1016/j.prostr.2022.03.002.
T. Robl, C. Krempaszky, A. Fillafer, and E. Werner. Examining the unloading behavior of dual-phase steels by means of microstructure simulations Materials Science and Engineering: A, 2021. cited By 5. doi:10.1016/j.msea.2021.141744.
B. Sadeghi, J. Qi, X. Min, and P. Cavaliere. Modelling of strain rate dependent dislocation behavior of CNT/Al composites based on grain interior/grain boundary affected zone (GI/GBAZ) Materials Science and Engineering: A, 2021. cited By 16. doi:10.1016/j.msea.2021.141547.
R. Saunders, C. Butler, J. Michopoulos, D. Lagoudas, A. Elwany, and A. Bagchi. Mechanical behavior predictions of additively manufactured microstructures using functional Gaussian process surrogates npj Computational Materials, 2021. cited By 14. doi:10.1038/s41524-021-00548-y.
K. Sedighiani, V. Shah, K. Traka, M. Diehl, F. Roters, J. Sietsma, and D. Raabe. Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshing International Journal of Plasticity, 2021. cited By 13. doi:10.1016/j.ijplas.2021.103078.
M. Shapovalova and O. Vodka. Image processing technology to determine the parameters of the internal structure of composite materials In 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPI Week 2021 - Conference Proceedings, 539–543. Institute of Electrical and Electronics Engineers Inc., 2021. cited By 0. doi:10.1109/KhPIWeek53812.2021.9570099.
L. Sharma, R.H.J. Peerlings, M.G.D. Geers, and F. Roters. Integral nonlocal approach to model interface decohesion in FFT solvers Engineering Fracture Mechanics, 2021. cited By 1. doi:10.1016/j.engfracmech.2020.107516.
A. Shokry, A. Ahadi, P. Ståhle, and D. Orlov. Improvement of structural efficiency in metals by the control of topological arrangements in ultrafine and coarse grains Scientific Reports, 2021. cited By 4. doi:10.1038/s41598-021-96930-3.
L. Singh, S. Vohra, and M. Sharma. Investigation of strain rate behavior of aluminium and AA2024 using crystal plasticity In Materials Today: Proceedings, volume 50, 2345–2350. Elsevier Ltd, 2021. cited By 1. doi:10.1016/j.matpr.2021.10.232.
M. Sitko, K. Banaś, and L. Madej. Scaling scientific cellular automata microstructure evolution model of static recrystallization toward practical industrial calculations Materials, 2021. cited By 6. doi:10.3390/ma14154082.
K. Somlo, K. Poulios, C.V. Funch, and C.F. Niordson. Anisotropic tensile behaviour of additively manufactured Ti-6Al-4V simulated with crystal plasticity Mechanics of Materials, 2021. cited By 10. doi:10.1016/j.mechmat.2021.104034.
D. Sonawane and P. Kumar. Role of Grain Boundary Sliding in Structural Integrity of Cu-Filled Through Si Via During Isothermal Annealing Journal of Electronic Materials, 50(3):767–778, 2021. cited By 3. doi:10.1007/s11664-020-08476-1.
K.S. Stopka, M. Yaghoobi, J.E. Allison, and D.L. McDowell. Effects of Boundary Conditions on Microstructure-Sensitive Fatigue Crystal Plasticity Analysis Integrating Materials and Manufacturing Innovation, 10(3):393–412, 2021. cited By 15. doi:10.1007/s40192-021-00219-2.
L. Sun, C. Ling, H. Chen, and D. Li. Application of Multiscale Mechanics Methods in Structural Integrity Analysis [结构完整性分析中的多尺度力学方法] Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 57(16):106–121, 2021. cited By 2. doi:10.3901/JME.2021.16.106.
T. Tancogne-Dejean, M.B. Gorji, J. Zhu, and D. Mohr. Recurrent neural network modeling of the large deformation of lithium-ion battery cells International Journal of Plasticity, 2021. cited By 22. doi:10.1016/j.ijplas.2021.103072.
A. Tran and T. Wildey. Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion and Machine Learning JOM, 73(1):72–89, 2021. cited By 17. doi:10.1007/s11837-020-04432-w.
A. Tran and T. Wildey. Solving Stochastic Inverse Problems for Structure-Property Linkages Using Data-Consistent Inversion Minerals, Metals and Materials Series, 5:447–458, 2021. cited By 0. doi:10.1007/978-3-030-65261-6_41.
P. Trusov, A. Shveykin, and N. Kondratev. Some issues on crystal plasticity models formulation: Motion decomposition and constitutive law variants Crystals, 2021. cited By 5. doi:10.3390/cryst11111392.
W.C. Tucker, P. Chowdhury, L.J. Abbott, and J.B. Haskins. Toward an In-Depth Material Model for Cermet Nuclear Thermal Rocket Fuel Elements Nuclear Technology, 207(6):825–835, 2021. cited By 1. doi:10.1080/00295450.2020.1850162.
M. Umar, F. Qayyum, M.U. Farooq, S. Guk, and U. Prahl. Qualitative investigation of damage initiation at meso-scale in spheroidized c45ec steels by using crystal plasticity-based numerical simulations Journal of Composites Science, 2021. cited By 5. doi:10.3390/jcs5080222.
M. Umar, F. Qayyum, M.U. Farooq, L.A. Khan, S. Guk, and U. Prahl. Analyzing the cementite particle size and distribution in heterogeneous microstructure of C45EC steel using crystal plasticity based DAMASK code In Proceedings of 18th International Bhurban Conference on Applied Sciences and Technologies, IBCAST 2021, 15–20. Institute of Electrical and Electronics Engineers Inc., 2021. cited By 6. doi:10.1109/IBCAST51254.2021.9393292.
M. Umar, F. Qayyum, M.U. Farooq, L.A. Khan, S. Guk, and U. Prahl. Investigating the Effect of Cementite Particle Size and Distribution on Local Stress and Strain Evolution in Spheroidized Medium Carbon Steels using Crystal Plasticity-Based Numerical Simulations Steel Research International, 2021. cited By 11. doi:10.1002/srin.202000407.
K. Venkatraman, M. Ben Haj Slama, V. Taupin, N. Maloufi, and A. Guitton. Tuning critical resolved shear stress ratios for bcc-titanium Ti21S via an automated data analysis approach Modelling and Simulation in Materials Science and Engineering, 2021. cited By 2. doi:10.1088/1361-651X/abfeb0.
V.K. Verma, C.K. Gopalakrishnan, S. Hamada, T. Yokoi, and H. Noguchi. Effect of strain localization on fatigue properties of precipitation-hardened steel with an arbitrarily length crack International Journal of Fatigue, 2021. cited By 6. doi:10.1016/j.ijfatigue.2020.106017.
A. Vuppala, A. Krämer, and J. Lohmar. On sampling discrete orientations from xrd for texture representation in aggregates with varying grain size Crystals, 2021. cited By 1. doi:10.3390/cryst11091021.
C. Wang, X. Wang, C. Wang, G. Wu, and Y. Lai. A comparative study of plastic deformation behaviors of OFHC copper based on crystal plasticity models in conjunction with phenomenological and dislocation density-based hardening laws Journal of Materials Science, 56(14):8789–8814, 2021. cited By 1. doi:10.1007/s10853-021-05816-2.
A. Weidner and H. Biermann. Review on Strain Localization Phenomena Studied by High-Resolution Digital Image Correlation Advanced Engineering Materials, 2021. cited By 23. doi:10.1002/adem.202001409.
J. Wu, W. Liu, N. Vajragupta, A. Hartmaier, and J. Lian. A numerical investigation on the effects of porosity on the plastic anisotropy of additive manufactured stainless steel with various crystallographic textures In ESAFORM 2021 - 24th International Conference on Material Forming. PoPuPS (University of LiFge Library), 2021. cited By 1. doi:10.25518/esaform21.4308.
Y. Xiong, P.S. Karamched, C.-T. Nguyen, D.M. Collins, N. Grilli, C.M. Magazzeni, E. Tarleton, and A.J. Wilkinson. An in-situ synchrotron diffraction study of stress relaxation in titanium: Effect of temperature and oxygen on cold dwell fatigue Acta Materialia, 2021. cited By 5. doi:10.1016/j.actamat.2021.116937.
S. Xu, X. Shang, H. Zhang, X. Dong, and Z. Cui. Size Effects on the Mechanical Responses and Deformation Mechanisms of AZ31 Mg Foils Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 52(8):3585–3599, 2021. cited By 2. doi:10.1007/s11661-021-06331-4.
K.U. Yazar, M. Shamitha, and S. Suwas. Texture-dependent dwell fatigue response of titanium Philosophical Magazine, 101(12):1443–1470, 2021. cited By 4. doi:10.1080/14786435.2021.1916116.
S.M. Zanjani, A. Basti, and R. Ansari. Multicrystalline materials analysis based on their microstructure with emphasis on predicting forming limit diagrams Iranian Journal of Materials Science and Engineering, 2021. cited By 0. doi:10.22068/ijmse.1753.
J. Zhang, S. Ding, and S. Du. A damage-effect-involved phenomenological crystal plasticity model and computational methods for mechanical responses of FeCrAl alloys Materials Today Communications, 2021. cited By 6. doi:10.1016/j.mtcomm.2021.102595.
X. Zhang, S. Lu, B. Zhang, X. Tian, Q. Kan, and G. Kang. Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations Acta Materialia, 202:88–98, 2021. cited By 42. doi:10.1016/j.actamat.2020.10.052.
X.X. Zhang and H. Andrä. Crystal plasticity simulation of the macroscale and microscale stress–strain relations of additively manufactured AlSi10Mg alloy Computational Materials Science, 2021. cited By 18. doi:10.1016/j.commatsci.2021.110832.
X.X. Zhang, A. Lutz, H. Andrä, M. Lahres, D. Sittig, E. Maawad, W.M. Gan, and D. Knoop. An additively manufactured and direct-aged AlSi3.5Mg2.5 alloy with superior strength and ductility: micromechanical mechanisms International Journal of Plasticity, 2021. cited By 12. doi:10.1016/j.ijplas.2021.103083.
J. Zhu, Q. Zhou, Y. Huang, B. Zhou, and J. Wang. Surface deformation of single crystalline copper on different nano-scratching paths Journal of Materials Science, 56(17):10640–10652, 2021. cited By 3. doi:10.1007/s10853-021-05948-5.
S. Akhondzadeh, R.B. Sills, N. Bertin, and W. Cai. Dislocation density-based plasticity model from massive discrete dislocation dynamics database Journal of the Mechanics and Physics of Solids, 2020. cited By 13. doi:10.1016/j.jmps.2020.104152.
Y.G. An, W.D.T. Spanjer, and P.J.J. Kok. Virtual experimental study of microstructure design of dual phase steel for optimal formability In Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018, 1451–1461. International Centre for Numerical Methods in Engineering, CIMNE, 2020. cited By 0. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081066852&partnerID=40&md5=9c4c451941745de6720aa101e6401b9e.
B. Böttger, M. Apel, M. Budnitzki, J. Eiken, G. Laschet, and B. Zhou. Calphad coupled phase-field model with mechano-chemical contributions and its application to rafting of γ’ in CMSX-4 Computational Materials Science, 2020. cited By 13. doi:10.1016/j.commatsci.2020.109909.
A. Chakraborty, C. Zhang, S. Balachandran, T.R. Bieler, and P. Eisenlohr. Assessment of surface and bulk-dominated methodologies to measure critical resolved shear stresses in hexagonal materials Acta Materialia, 184:241–253, 2020. cited By 12. doi:10.1016/j.actamat.2019.11.023.
S. Chandra, M.K. Samal, R. Kapoor, and V.M. Chavan. Simulation of bicrystal deformation including grain boundary effects: Atomistic computations and crystal plasticity finite element analysis Computational Materials Science, 2020. cited By 5. doi:10.1016/j.commatsci.2020.109641.
B. Cui, X. Liu, A.H. King, G. Ouyang, C.I. Nlebedim, and J. Cui. Overcoming mechanical fragility in Sm-Co permanent magnet materials Acta Materialia, 196:528–538, 2020. cited By 14. doi:10.1016/j.actamat.2020.06.058.
N. Deeparekha, A. Gupta, M. Demiral, and R.K. Khatirkar. Cold rolling of an interstitial free (IF) steel—Experiments and simulations Mechanics of Materials, 2020. cited By 11. doi:10.1016/j.mechmat.2020.103420.
M. Diehl, D. Wang, C. Liu, J. Rezaei Mianroodi, F. Han, D. Ma, P.J.J. Kok, F. Roters, and P. Shanthraj. Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures Using DAMASK—The Düsseldorf Advanced Material Simulation Kit Advanced Engineering Materials, 2020. cited By 12. doi:10.1002/adem.201901044.
M.S. Dodaran, J. Wang, N. Shamsaei, and S. Shao. Investigating the interaction between persistent slip bands and surface hard coatings via crystal plasticity simulations Crystals, 10(11):1–14, 2020. cited By 2. doi:10.3390/cryst10111012.
S.P. Donegan and M.A. Groeber. Data structures andworkflows for ICME. Springer International Publishing, 2020. cited By 1. doi:10.1007/978-3-030-40562-5_2.
Е. Emelianova, V. Romanova, O. Zinovieva, and R. Balokhonov. The effects of surface-layer grain size and texture on deformation-induced surface roughening in polycrystalline titanium hardened by ultrasonic impact treatment Materials Science and Engineering: A, 2020. cited By 9. doi:10.1016/j.msea.2020.139896.
T. Fischer, S. Ulan kyzy, O. Munz, and E. Werner. Microstructure-based modelling of rubbing in polycrystalline honeycomb structures Continuum Mechanics and Thermodynamics, 32(5):1371–1383, 2020. cited By 7. doi:10.1007/s00161-019-00852-5.
J. Galán-López and J. Hidalgo. Use of the correlation between grain size and crystallographic orientation in crystal plasticity simulations: Application to AISI 420 stainless steel Crystals, 10(9):1–20, 2020. cited By 3. doi:10.3390/cryst10090819.
V. Gaur, F. Briffod, and M. Enoki. Micro-mechanical investigation of fatigue behavior of Al alloys containing surface/superficial defects Materials Science and Engineering: A, 2020. cited By 18. doi:10.1016/j.msea.2020.138958.
Y. Geng, É. McCarthy, D. Brabazon, and N. Harrison. Ti6Al4V functionally graded material via high power and high speed laser surface modification Surface and Coatings Technology, 2020. cited By 13. doi:10.1016/j.surfcoat.2020.126085.
N. Grilli, A.C.F. Cocks, and E. Tarleton. A phase field model for the growth and characteristic thickness of deformation-induced twins Journal of the Mechanics and Physics of Solids, 2020. cited By 18. doi:10.1016/j.jmps.2020.104061.
N. Grilli, P. Earp, A.C.F. Cocks, J. Marrow, and E. Tarleton. Characterisation of slip and twin activity using digital image correlation and crystal plasticity finite element simulation: Application to orthorhombic α-uranium Journal of the Mechanics and Physics of Solids, 2020. cited By 20. doi:10.1016/j.jmps.2019.103800.
N. Grilli, E. Tarleton, P.D. Edmondson, M.N. Gussev, and A.C.F. Cocks. In situ measurement and modelling of the growth and length scale of twins in α -uranium Physical Review Materials, 2020. cited By 10. doi:10.1103/PhysRevMaterials.4.043605.
T. Hama. Crystal plasticity modeling for non-ferrous metals and its engineering applications ISIJ International, 60(9):1849–1862, 2020. cited By 2. doi:10.2355/isijinternational.ISIJINT-2020-011.
F. Han, M. Diehl, F. Roters, and D. Raabe. Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations Journal of Materials Processing Technology, 2020. cited By 24. doi:10.1016/j.jmatprotec.2019.116449.
F. Han, F. Roters, and D. Raabe. Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver International Journal of Plasticity, 125:97–117, 2020. cited By 35. doi:10.1016/j.ijplas.2019.09.004.
Q.-N. Han, S.-S. Rui, W. Qiu, Y. Su, X. Ma, Z. Su, H. Cui, and H. Shi. Effect of crystal orientation on the indentation behaviour of Ni-based single crystal superalloy Materials Science and Engineering: A, 2020. cited By 13. doi:10.1016/j.msea.2019.138893.
S. Haouala, S. Lucarini, J. LLorca, and J. Segurado. Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization Journal of the Mechanics and Physics of Solids, 2020. cited By 42. doi:10.1016/j.jmps.2019.103755.
A. Harte, M. Atkinson, M. Preuss, and J. Quinta da Fonseca. A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy Acta Materialia, 195:555–570, 2020. cited By 33. doi:10.1016/j.actamat.2020.05.029.
J. Hidalgo, M. Vittorietti, H. Farahani, F. Vercruysse, R. Petrov, and J. Sietsma. Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel Acta Materialia, 200:74–90, 2020. cited By 15. doi:10.1016/j.actamat.2020.08.072.
H. Hippke, S. Hirsiger, B. Berisha, and P. Hora. Optimized and validated prediction of plastic yielding supported by cruciform experiments and crystal plasticity International Journal of Material Forming, 13(5):841–852, 2020. cited By 5. doi:10.1007/s12289-020-01569-6.
S. Hirsiger, B. Berisha, H. Hippke, and P. Hora. Crystal plasticity as complementary modelling technique for improved simulations results of anisotropic sheet metal behaviour in forming processes In IOP Conference Series: Materials Science and Engineering, volume 967. IOP Publishing Ltd, 2020. cited By 0. doi:10.1088/1757-899X/967/1/012067.
T. Hochrainer and B. Weger. Is crystal plasticity non-conservative? Lessons from large deformation continuum dislocation theory Journal of the Mechanics and Physics of Solids, 2020. cited By 7. doi:10.1016/j.jmps.2020.103957.
D. Horny, J. Schukraft, K.A. Weidenmann, and K. Schulz. Numerical and Experimental Characterization of Elastic Properties of a Novel, Highly Homogeneous Interpenetrating Metal Ceramic Composite Advanced Engineering Materials, 2020. cited By 17. doi:10.1002/adem.201901556.
Y. Ibrahim, K.H. Khafagy, T.M. Hatem, and H.A. Hegazi. Three-dimensional crystal plasticity modelling of high-strength tool steels using fourier based spectral solver In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), volume 12. American Society of Mechanical Engineers (ASME), 2020. cited By 0. doi:10.1115/IMECE2020-24167.
M.G. Isaenkova, Y.A. Perlovich, O.A. Krymskaya, and D.I. Zhuk. Accounting for twinning when modelling plastic deformation of-zirconium Tsvetnye Metally, 2020(3):86–91, 2020. cited By 0. doi:10.17580/tsm.2020.03.13.
M.G. Isaenkova, A.V. Yudin, A.E. Rubanov, A.V. Osintsev, and L.A. Degadnikova. Deformation behavior modelling of lattice structures manufactured by a selective laser melting of 316L steel powder Journal of Materials Research and Technology, 9(6):15177–15184, 2020. cited By 10. doi:10.1016/j.jmrt.2020.10.089.
M. Kasemer, G. Falkinger, and F. Roters. A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet Modelling and Simulation in Materials Science and Engineering, 2020. cited By 11. doi:10.1088/1361-651X/abb8e2.
Y. Kawano, M. Sato, T. Mayama, M. Mitsuhara, and S. Yamasaki. Quantitative evaluation of slip activity in polycrystalline α-titanium considering non-local interactions between crystal grains International Journal of Plasticity, 2020. cited By 13. doi:10.1016/j.ijplas.2019.12.001.
S. Kitsuya, H. Ohtsubo, N. Fujita, K. Ichimiya, and K. Hase. Effect of crystallographic texture on anisotropy of mechanical properties in high strength martensitic steel ISIJ International, 60(2):346–351, 2020. cited By 3. doi:10.2355/isijinternational.ISIJINT-2019-164.
M. Kühbach and F. Roters. Quantification of 3D spatial correlations between state variables and distances to the grain boundary network in full-field crystal plasticity spectral method simulations Modelling and Simulation in Materials Science and Engineering, 2020. cited By 3. doi:10.1088/1361-651X/ab7f8c.
Q. Li, H. Zhang, F. Chen, D. Xu, D. Sui, and Z. Cui. Study on the plastic anisotropy of advanced high strength steel sheet: Experiments and microstructure-based crystal plasticity modeling International Journal of Mechanical Sciences, 2020. cited By 27. doi:10.1016/j.ijmecsci.2020.105569.
P. Lin and A. El-Azab. Implementation of annihilation and junction reactions in vector density-based continuum dislocation dynamics Modelling and Simulation in Materials Science and Engineering, 2020. cited By 12. doi:10.1088/1361-651X/ab7d90.
W. Liu, B.K. Chen, Y. Pang, and A. Najafzadeh. A 3D phenomenological yield function with both in and out-of-plane mechanical anisotropy using full-field crystal plasticity spectral method for modelling sheet metal forming of strong textured aluminum alloy International Journal of Solids and Structures, 193-194:117–133, 2020. cited By 18. doi:10.1016/j.ijsolstr.2020.02.008.
W. Liu and J. Lian. Microstructure effects on the plastic anisotropy of a fine-structured dual-phase steel In Procedia Manufacturing, volume 47, 1552–1560. Elsevier B.V., 2020. cited By 3. doi:10.1016/j.promfg.2020.04.349.
W. Liu, J. Lian, N. Aravas, and S. Münstermann. A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel International Journal of Plasticity, 2020. cited By 47. doi:10.1016/j.ijplas.2019.10.002.
X. Lu, J. Zhao, Z. Wang, B. Gan, J. Zhao, G. Kang, and X. Zhang. Crystal plasticity finite element analysis of gradient nanostructured TWIP steel International Journal of Plasticity, 2020. cited By 53. doi:10.1016/j.ijplas.2020.102703.
X. Lu, J. Zhao, C. Yu, Z. Li, Q. Kan, G. Kang, and X. Zhang. Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations Journal of the Mechanics and Physics of Solids, 2020. cited By 28. doi:10.1016/j.jmps.2020.103971.
R. Ma and W. Sun. FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials Computer Methods in Applied Mechanics and Engineering, 2020. cited By 33. doi:10.1016/j.cma.2019.112781.
S.A.H. Motaman, F. Kies, P. Köhnen, M. Létang, M. Lin, A. Molotnikov, and C. Haase. Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach JOM, 72(3):1092–1104, 2020. cited By 19. doi:10.1007/s11837-020-04028-4.
S.A.H. Motaman, F. Roters, and C. Haase. Anisotropic polycrystal plasticity due to microstructural heterogeneity: A multi-scale experimental and numerical study on additively manufactured metallic materials Acta Materialia, 185:340–369, 2020. cited By 51. doi:10.1016/j.actamat.2019.12.003.
Y. Pang, B.K. Chen, W. Liu, S.F. Yu, and S.N. Lingamanaik. Development of a non-contact and non-destructive laser speckle imaging system for remote sensing of anisotropic deformation around fastener holes NDT and E International, 2020. cited By 5. doi:10.1016/j.ndteint.2020.102219.
S. Papanikolaou. Microstructural inelastic fingerprints and data-rich predictions of plasticity and damage in solids Computational Mechanics, 66(1):141–154, 2020. cited By 7. doi:10.1007/s00466-020-01845-x.
S. Prüger and B. Kiefer. A comparative study of integration algorithms for finite single crystal (visco-)plasticity International Journal of Mechanical Sciences, 2020. cited By 6. doi:10.1016/j.ijmecsci.2020.105740.
S. Prüger and B. Kiefer. Towards the Crystal Plasticity Based Modeling of TRIP-Steels—From Material Point to Structural Simulations Springer Series in Materials Science, 298:793–823, 2020. cited By 1. doi:10.1007/978-3-030-42603-3_24.
F. Qayyum, A.A. Chaudhry, S. Guk, M. Schmidtchen, R. Kawalla, and U. Prahl. Effect of 3d representative volume element (Rve) thickness on stress and strain partitioning in crystal plasticity simulations of multi-phase materials Crystals, 10(10):1–18, 2020. cited By 25. doi:10.3390/cryst10100944.
F. Qayyum, S. Guk, S. Prüger, M. Schmidtchen, I. Saenko, B. Kiefer, R. Kawalla, and U. Prahl. Investigating the local deformation and transformation behavior of sintered X3CrMnNi16-7-6 TRIP steel using a calibrated crystal plasticity-based numerical simulation model International Journal of Materials Research, 111(5):392–404, 2020. cited By 18. doi:10.3139/146.111900.
F. Qayyum, S. Guk, M. Schmidtchen, R. Kawalla, and U. Prahl. Modeling the local deformation and transformation behavior of cast X8CrMnNi16-6-6 TRIP steel and 10 Crystals, 2020. cited By 21. doi:10.3390/cryst10030221.
D. Raabe, B. Sun, A. Kwiatkowski Da Silva, B. Gault, H.-W. Yen, K. Sedighiani, P. Thoudden Sukumar, I.R. Souza Filho, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C.H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S.-L. Wong, C. Baron, M. Diehl, F. Roters, and D. Ponge. Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51(11):5517–5586, 2020. cited By 82. doi:10.1007/s11661-020-05947-2.
D.E. Ricciardi, O.A. Chkrebtii, and S.R. Niezgoda. Uncertainty Quantification Accounting for Model Discrepancy Within a Random Effects Bayesian Framework Integrating Materials and Manufacturing Innovation, 9(2):181–198, 2020. cited By 7. doi:10.1007/s40192-020-00176-2.
J.D. Robson, O. Engler, C. Sigli, A. Deschamps, and W.J. Poole. Advances in Microstructural Understanding of Wrought Aluminum Alloys Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51(9):4377–4389, 2020. cited By 17. doi:10.1007/s11661-020-05908-9.
K. Sedighiani, M. Diehl, K. Traka, F. Roters, J. Sietsma, and D. Raabe. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves International Journal of Plasticity, 2020. cited By 55. doi:10.1016/j.ijplas.2020.102779.
P. Shanthraj, C. Liu, A. Akbarian, B. Svendsen, and D. Raabe. Multi-component chemo-mechanics based on transport relations for the chemical potential Computer Methods in Applied Mechanics and Engineering, 2020. cited By 11. doi:10.1016/j.cma.2020.113029.
L. Sharma, R.H.J. Peerlings, P. Shanthraj, F. Roters, and M.G.D. Geers. An FFT-based spectral solver for interface decohesion modelling using a gradient damage approach Computational Mechanics, 65(4):925–939, 2020. cited By 14. doi:10.1007/s00466-019-01801-4.
S.E. Shin, S. Nambu, H. Kim, J. Inoue, T. Koseki, and S.-J. Lee. Evaluation of factors influencing the lath martensitic deformation behavior of multi-layered steels Materials Science and Engineering: A, 2020. cited By 0. doi:10.1016/j.msea.2020.139353.
L. Singh, S. Vohra, and M. Sharma. A Brief Overview of Crystal Plasticity Approach for Computational Materials Modeling Lecture Notes in Mechanical Engineering, pages 61–69, 2020. cited By 1. doi:10.1007/978-981-15-4059-2_5.
H.-W. Son and S.-K. Hyun. Periodic formations of deformation twins and dislocation arrays via grain boundary sliding at serrated grain boundary in cold-shear-strained AZ31 alloy International Journal of Plasticity, 2020. cited By 14. doi:10.1016/j.ijplas.2020.102815.
M. Sudmanns, J. Bach, D. Weygand, and K. Schulz. Data-driven exploration and continuum modeling of dislocation networks Modelling and Simulation in Materials Science and Engineering, 2020. cited By 9. doi:10.1088/1361-651X/ab97ef.
B. Tirbonod. Simulations of isothermal and thermomechanical fatigue of a polycrystal made out of austenitic stainless steels and relation to the Coffin-Manson law Theoretical and Applied Fracture Mechanics, 2020. cited By 3. doi:10.1016/j.tafmec.2020.102656.
A. Weidner. Prospects of complementary in situ techniques Springer Series in Materials Science, 295:365–384, 2020. cited By 0. doi:10.1007/978-3-030-37149-4_8.
D. Wicht, M. Schneider, and T. Böhlke. On Quasi-Newton methods in fast Fourier transform-based micromechanics International Journal for Numerical Methods in Engineering, 121(8):1665–1694, 2020. cited By 28. doi:10.1002/nme.6283.
X. Wu, S.K. Makineni, C.H. Liebscher, G. Dehm, J. Rezaei Mianroodi, P. Shanthraj, B. Svendsen, D. Bürger, G. Eggeler, D. Raabe, and B. Gault. Unveiling the Re effect in Ni-based single crystal superalloys Nature Communications, 2020. cited By 101. doi:10.1038/s41467-019-14062-9.
W. Xia, G. Dehm, and S. Brinckmann. Investigation of single asperity wear at the microscale in an austenitic steel Wear, 2020. cited By 6. doi:10.1016/j.wear.2020.203289.
A. Yamanaka, R. Kamijyo, K. Koenuma, I. Watanabe, and T. Kuwabara. Deep neural network approach to estimate biaxial stress-strain curves of sheet metals Materials and Design, 2020. cited By 32. doi:10.1016/j.matdes.2020.108970.
Z. Yang, W. Xu, H. Wu, X. Wan, Y. Chen, D. Shan, and B. Guo. Enhancing hoop strength of titanium alloy tube by cross spinning International Journal of Machine Tools and Manufacture, 2020. cited By 15. doi:10.1016/j.ijmachtools.2020.103530.
H.-M. Zhang, S. Xu, Q. Li, J.-R. Liu, X.-Q. Shang, X.-H. Dong, and Z.-S. Cui. Progress of crystal plasticity theory and simulations [晶体塑性理论及模拟研究进展] Suxing Gongcheng Xuebao/Journal of Plasticity Engineering, 27(5):12–32, 2020. cited By 12. doi:10.3969/j.issn.1007-2012.2020.05.003.
J. Zhang and S. Ding. Mesoscale simulation research on the homogenized elasto-plastic behavior of FeCrAl alloys Materials Today Communications, 2020. cited By 13. doi:10.1016/j.mtcomm.2019.100718.
J. Zhu, C. Xiong, L. Ma, Q. Zhou, Y. Huang, B. Zhou, and J. Wang. Coupled effect of scratching direction and speed on nano-scratching behavior of single crystalline copper Tribology International, 2020. cited By 7. doi:10.1016/j.triboint.2020.106385.
V. Atreya, C. Bos, and M.J. Santofimia. Cellular automata modeling of plastic deformation in ferrite during martensite formation in dual-phase steels In Proceedings for the 8th International Conference on Modeling and Simulation of Metallurgical Processes in Steelmaking, STEELSIM 2019, 740–749. Association for Iron and Steel Technology, AISTECH, 2019. cited By 0. doi:10.33313/503/078.
K. Balusu, R. Kelton, E.I. Meletis, and H. Huang. Investigating the relationship between grain orientation and surface height changes in nickel polycrystals under tensile plastic deformation Mechanics of Materials, 134:165–175, 2019. cited By 8. doi:10.1016/j.mechmat.2019.04.011.
A. Beniwal, R. Dadhich, and A. Alankar. Deep learning based predictive modeling for structure-property linkages Materialia, 2019. cited By 16. doi:10.1016/j.mtla.2019.100435.
B. Berisha, S. Hirsiger, H. Hippke, P. Hora, A. Mariaux, D. Leyvraz, and C. Bezençon. Modeling of anisotropic hardening and grain size effects based on advanced numerical methods and crystal plasticity Archives of Mechanics, 71(4-5):489–505, 2019. cited By 4. doi:10.24423/aom.3162.
F. Briffod, T. Shiraiwa, and M. Enoki. Numerical investigation of the influence of twinning/detwinning on fatigue crack initiation in AZ31 magnesium alloy Materials Science and Engineering: A, 753:79–90, 2019. cited By 35. doi:10.1016/j.msea.2019.03.030.
T.-L. Cheng, Y.-H. Wen, and J.A. Hawk. Diffuse interface approach to modeling crystal plasticity with accommodation of grain boundary sliding International Journal of Plasticity, 114:106–125, 2019. cited By 19. doi:10.1016/j.ijplas.2018.10.012.
R. Dadhich and A. Alankar. Coupled crystal plasticity-phase field modeling of multi-phase metals In Procedia Structural Integrity, volume 14, 104–111. Elsevier B.V., 2019. cited By 0. doi:10.1016/j.prostr.2019.05.014.
N. Dang, S. Chen, L. Liu, E. Maire, J. Adrien, S. Cazottes, W. Xiao, C. Ma, and L. Zhou. Analysis of hybrid fracture in α/β titanium alloy with lamellar microstructure Materials Science and Engineering: A, 744:54–63, 2019. cited By 8. doi:10.1016/j.msea.2018.12.007.
J. Denk, A. Nischler, L. Whitmore, O. Huber, and H. Saage. Discontinuous and inhomogeneous strain distributions under monotonic and cyclic loading in textured wrought magnesium alloys Materials Science and Engineering: A, 2019. cited By 6. doi:10.1016/j.msea.2019.138182.
M. Diehl, J. Niehuesbernd, and E. Bruder. Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of bcc steel Metals, 2019. cited By 13. doi:10.3390/met9121252.
B. Dutta, S. Babu, and B. Jared. Science, Technology and Applications of Metals in Additive Manufacturing. Elsevier, 2019. cited By 35. doi:10.1016/B978-0-12-816634-5.00010-8.
T. Fischer, E. Werner, S. Ulan kyzy, and O. Munz. Crystal plasticity modeling of polycrystalline Ni-base superalloy honeycombs under combined thermo-mechanical loading Continuum Mechanics and Thermodynamics, 31(3):703–713, 2019. cited By 11. doi:10.1007/s00161-018-0721-z.
N. Fujita, S. Igi, M. Diehl, F. Roters, and D. Raabe. The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis Modelling and Simulation in Materials Science and Engineering, 2019. cited By 3. doi:10.1088/1361-651X/ab4143.
N. Grilli and M. Koslowski. The effect of crystal anisotropy and plastic response on the dynamic fracture of energetic materials Journal of Applied Physics, 2019. cited By 29. doi:10.1063/1.5109761.
M.G. Isaenkova, Y.A. Perlovich, A.E. Rubanov, and A.V. Yudin. Anisotropy of the mechanical properties of austenitic steel products obtained by selective laser melting CIS Iron and Steel Review, 18:64–68, 2019. cited By 4. doi:10.17580/cisisr.2019.02.13.
C. Kale, P. Garg, B.G. Bazehhour, S. Srinivasan, M.A. Bhatia, P. Peralta, and K.N. Solanki. Oxygen effects on crystal plasticity of Titanium: A multiscale calibration and validation framework Acta Materialia, 176:19–32, 2019. cited By 16. doi:10.1016/j.actamat.2019.06.040.
H. Kim, T. Yamamoto, Y. Sato, and J. Inoue. Establishment of structure-property linkages using a Bayesian model selection method: Application to a dual-phase metallic composite system Acta Materialia, 176:264–277, 2019. cited By 3. doi:10.1016/j.actamat.2019.07.006.
P.J.J. Kok, W. Spanjer, F. Korver, Y. An, and M. Aarnts. Crystal plasticity based predictions of mechanical properties from heterogeneous steel microstructures In IOP Conference Series: Materials Science and Engineering, volume 651. IOP Publishing Ltd, 2019. cited By 0. doi:10.1088/1757-899X/651/1/012032.
L. Koschmieder, S. Hojda, M. Apel, R. Altenfeld, Y. Bami, C. Haase, M. Lin, A. Vuppala, G. Hirt, and G.J. Schmitz. AixViPMaP®—an Operational Platform for Microstructure Modeling Workflows Integrating Materials and Manufacturing Innovation, 8(2):122–143, 2019. cited By 7. doi:10.1007/s40192-019-00138-3.
A. Lahiri, P. Shanthraj, and F. Roters. Understanding the mechanisms of electroplasticity from a crystal plasticity perspective Modelling and Simulation in Materials Science and Engineering, 2019. cited By 26. doi:10.1088/1361-651X/ab43fc.
P. Landkammer and P. Steinmann. Plastic dislocation and incompatibility density as indicators for residual stresses In 15th International Conference on Computational Plasticity. Fundamentals and Applications, COMPLAS 2019, 201–210. International Center for Numerical Methods in Engineering, 2019. cited By 0. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101988745&partnerID=40&md5=42d0ff5e27597d97b1e439ed06c9d2eb.
W. Li, L. Wang, B. Zhou, C. Liu, and X. Zeng. Grain-scale deformation in a Mg−0.8 wt Journal of Materials Science and Technology, 35(10):2200–2206, 2019. cited By 25. doi:10.1016/j.jmst.2019.04.030.
C. Liu, P. Shanthraj, J.D. Robson, M. Diehl, S. Dong, J. Dong, W. Ding, and D. Raabe. On the interaction of precipitates and tensile twins in magnesium alloys Acta Materialia, 178:146–162, 2019. cited By 70. doi:10.1016/j.actamat.2019.07.046.
G. Liua, D. Xiea, S. Wangb, A. Misrab, and J. Wang. Mesoscale crystal plasticity modeling of nanoscale al-al2cu eutectic alloy International Journal of Plasticity, 121:134–152, 2019. cited By 16. doi:10.1016/j.ijplas.2019.06.008.
X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, and D. Raabe. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper International Journal of Plasticity, 113:52–73, 2019. cited By 108. doi:10.1016/j.ijplas.2018.09.007.
Z. Luo, L. Zhao, W. Tian, D. Yang, Y. Chen, J. Yu, and J. Li. Data link modeling and simulation based on DEVS In ACM International Conference Proceeding Series, 35–40. Association for Computing Machinery, 2019. cited By 3. doi:10.1145/3372806.3374911.
J.R. Mianroodi, P. Shanthraj, P. Kontis, J. Cormier, B. Gault, B. Svendsen, and D. Raabe. Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni–Al–Co Acta Materialia, 175:250–261, 2019. cited By 44. doi:10.1016/j.actamat.2019.06.008.
Y. Miyazawa, F. Briffod, T. Shiraiwa, and M. Enoki. Prediction of cyclic stress-strain property of steels by crystal plasticity simulations and machine learning Materials, 2019. cited By 22. doi:10.3390/ma12223668.
Y. Pang, B.K. Chen, and W. Liu. An investigation of plastic behaviour in cold-rolled aluminium alloy AA2024-T3 using laser speckle imaging sensor International Journal of Advanced Manufacturing Technology, 103(5-8):2707–2724, 2019. cited By 8. doi:10.1007/s00170-019-03717-y.
T. Park, Jr. Hector, L.G., X. Hu, F. Abu-Farha, M.R. Fellinger, H. Kim, R. Esmaeilpour, and F. Pourboghrat. Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation International Journal of Plasticity, 120:1–46, 2019. cited By 46. doi:10.1016/j.ijplas.2019.03.010.
M. Petersmann, T. Antretter, G. Cailletaud, A. Sannikov, U. Ehlenbröker, and F.D. Fischer. Unifcation of the non-linear geometric transformation theory of martensite and crystal plasticity - Application to dislocated lath martensite in steels International Journal of Plasticity, 119:140–155, 2019. cited By 13. doi:10.1016/j.ijplas.2019.02.016.
S. Piazolo, P.D. Bons, A. Griera, M.-G. Llorens, E. Gomez-Rivas, D. Koehn, J. Wheeler, R. Gardner, J.R.A. Godinho, L. Evans, R.A. Lebensohn, and M.W. Jessell. A review of numerical modelling of the dynamics of microstructural development in rocks and ice: Past, present and future Journal of Structural Geology, 125:111–123, 2019. cited By 14. doi:10.1016/j.jsg.2018.05.025.
F. Qayyum, S. Guk, R. Kawalla, and U. Prahl. Experimental Investigations and Multiscale Modeling to Study the Effect of Sulfur Content on Formability of 16MnCr5 Alloy Steel Steel Research International, 2019. cited By 17. doi:10.1002/srin.201800369.
A. Quadfasel, M. Teller, M. Madivala, C. Haase, F. Roters, and G. Hirt. Computer-aided material design for crash boxes made of high manganese steels Metals, 2019. cited By 3. doi:10.3390/met9070772.
D. Raabe, C.C. Tasan, and E.A. Olivetti. Strategies for improving the sustainability of structural metals Nature, 575(7781):64–74, 2019. cited By 199. doi:10.1038/s41586-019-1702-5.
S.K. Ravi, M. Seefeldt, A. Van Bael, J. Gawad, and D. Roose. Multi-scale material modelling to predict the material anisotropy of multi-phase steels Computational Materials Science, 160:382–396, 2019. cited By 7. doi:10.1016/j.commatsci.2019.01.028.
P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, and D. Raabe. Spectral solvers for crystal plasticity and multi-physics simulations. Springer Singapore, 2019. cited By 19. doi:10.1007/978-981-10-6884-3_80.
L. Sharma, R.H.J. Peerlings, M.G.D. Geers, and F. Roters. Microstructural influences on fracture at prior austenite grain boundaries in dual-phase steels Materials, 2019. cited By 8. doi:10.3390/ma12223687.
M. Sudmanns, M. Stricker, D. Weygand, T. Hochrainer, and K. Schulz. Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity Journal of the Mechanics and Physics of Solids, 2019. cited By 29. doi:10.1016/j.jmps.2019.103695.
J. Svoboda, W. Ecker, V.I. Razumovskiy, G.A. Zickler, and F.D. Fischer. Kinetics of interaction of impurity interstitials with dislocations revisited Progress in Materials Science, 101:172–206, 2019. cited By 25. doi:10.1016/j.pmatsci.2018.10.001.
X.F. Tang, L.F. Peng, S.Q. Shi, and M.W. Fu. Influence of crystal structure on size dependent deformation behavior and strain heterogeneity in micro-scale deformation International Journal of Plasticity, 118:147–172, 2019. cited By 42. doi:10.1016/j.ijplas.2019.02.004.
N.U.H. Tariq, L. Gyansah, X. Qiu, C. Jia, H.B. Awais, C. Zheng, H. Du, J. Wang, and T. Xiong. Achieving strength-ductility synergy in cold spray additively manufactured Al/B 4 C composites through a hybrid post-deposition treatment Journal of Materials Science and Technology, 35(6):1053–1063, 2019. cited By 35. doi:10.1016/j.jmst.2018.12.022.
J. von Kobylinski, R. Lawitzki, M. Hofmann, C. Krempaszky, and E. Werner. Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling Continuum Mechanics and Thermodynamics, 31(3):691–702, 2019. cited By 14. doi:10.1007/s00161-018-0720-0.
S. Xu, P. Zhou, G. Liu, D. Xiao, M. Gong, and J. Wang. Shock-induced two types of 101¯2 sequential twinning in Titanium Acta Materialia, 165:547–560, 2019. cited By 40. doi:10.1016/j.actamat.2018.12.017.
S.S. Babu. Toward process-based quality through a fundamental understanding of weld microstructural evolution Welding Journal, 97(1):1s–16s, 2018. cited By 8. doi:10.29391/2018.97.001.
K. Balusu and H. Huang. The relationship between average grain profile heights and plastic strains in nickel polycrystals under tensile plastic loading In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), volume 9. American Society of Mechanical Engineers (ASME), 2018. cited By 0. doi:10.1115/IMECE2018-88197.
A. Chakkedath, T. Maiti, J. Bohlen, S. Yi, D. Letzig, P. Eisenlohr, and C.J. Boehlert. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 49(6):2441–2454, 2018. cited By 21. doi:10.1007/s11661-018-4557-8.
R. Darvishi Kamachali, C. Schwarze, M. Lin, M. Diehl, P. Shanthraj, U. Prahl, I. Steinbach, and D. Raabe. Numerical Benchmark of Phase-Field Simulations with Elastic Strains: Precipitation in the Presence of Chemo-Mechanical Coupling Computational Materials Science, 155:541–553, 2018. cited By 15. doi:10.1016/j.commatsci.2018.09.011.
N. Fujita, N. Ishikawa, F. Roters, C.C. Tasan, and D. Raabe. Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents International Journal of Plasticity, 104:39–53, 2018. cited By 39. doi:10.1016/j.ijplas.2018.01.012.
N. Grilli, K.G.F. Janssens, J. Nellessen, S. Sandlöbes, and D. Raabe. Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method International Journal of Plasticity, 100:104–121, 2018. cited By 44. doi:10.1016/j.ijplas.2017.09.015.
S. Hirsiger, B. Berisha, C. Raemy, and P. Hora. On the prediction of yield loci based on crystal plasticity models and the spectral solver framework In Journal of Physics: Conference Series, volume 1063. Institute of Physics Publishing, 2018. cited By 4. doi:10.1088/1742-6596/1063/1/012056.
C. Hüter, P. Shanthraj, E. McEniry, R. Spatschek, T. Hickel, A. Tehranchi, X. Guo, and F. Roters. Multiscale modelling of hydrogen transport and segregation in polycrystalline steels Metals, 2018. cited By 18. doi:10.3390/met8060430.
K.H. Khafagy, T.M. Hatem, and S.M. Bedair. Impact of embedded voids on thin-films with high thermal expansion coefficients mismatch Applied Physics Letters, 2018. cited By 14. doi:10.1063/1.5011394.
S. Kitsuya, H. Ohtsubo, N. Fujita, K. Ichimiya, and K. Hase. Effect of crystallographic texture on anisotropy of mechanical properties in high strength martensitic steel Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 104(5):258–263, 2018. cited By 0. doi:10.2355/tetsutohagane.TETSU-2017-093.
C. Liu, P. Shanthraj, M. Diehl, F. Roters, S. Dong, J. Dong, W. Ding, and D. Raabe. An integrated crystal plasticity-phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials International Journal of Plasticity, 106:203–227, 2018. cited By 117. doi:10.1016/j.ijplas.2018.03.009.
M. Madivala, A. Schwedt, S.L. Wong, F. Roters, U. Prahl, and W. Bleck. Temperature dependent strain hardening and fracture behavior of TWIP steel International Journal of Plasticity, 104:80–103, 2018. cited By 87. doi:10.1016/j.ijplas.2018.02.001.
B. Mohammed, T. Park, F. Pourboghrat, J. Hu, R. Esmaeilpour, and F. Abu-Farha. Multiscale crystal plasticity modeling of multiphase advanced high strength steel International Journal of Solids and Structures, 151:57–75, 2018. cited By 29. doi:10.1016/j.ijsolstr.2017.05.007.
G. Shen, B. Hu, C. Zheng, J. Gu, and D. Li. Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale Computational Materials Science, 149:191–201, 2018. cited By 16. doi:10.1016/j.commatsci.2018.03.033.
T. Shiraiwa, F. Briffod, and M. Enoki. Development of integrated framework for fatigue life prediction in welded structures Engineering Fracture Mechanics, 198:158–170, 2018. cited By 15. doi:10.1016/j.engfracmech.2017.11.012.
D. Shore, P. Van Houtte, D. Roose, and A. Van Bael. Multiscale modelling of asymmetric rolling with an anisotropic constitutive law Comptes Rendus - Mecanique, 346(8):724–742, 2018. cited By 5. doi:10.1016/j.crme.2018.06.001.
M. Stricker, M. Sudmanns, K. Schulz, T. Hochrainer, and D. Weygand. Dislocation multiplication in stage II deformation of fcc multi-slip single crystals Journal of the Mechanics and Physics of Solids, 119:319–333, 2018. cited By 26. doi:10.1016/j.jmps.2018.07.003.
M. Takenaka, N. Fujita, Y. Hayakawa, and N. Tsuji. Unique effect of carbon addition on development of deformation texture through changes in slip activation and twin deformation in heavily cold-rolled Fe-3 Acta Materialia, 157:196–208, 2018. cited By 15. doi:10.1016/j.actamat.2018.07.019.
A. Van Bael, P. Seventekidis, M. Seefeldt, D. Roose, F. Han, F. Roters, and P. Kok. Yield locus prediction using statistical and RVE-based fast Fourier transform crystal plasticity models and validation for drawing steels In Journal of Physics: Conference Series, volume 1063. Institute of Physics Publishing, 2018. cited By 1. doi:10.1088/1742-6596/1063/1/012051.
D. Wang, M. Diehl, F. Roters, and D. Raabe. On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity Mechanics of Materials, 125:70–79, 2018. cited By 11. doi:10.1016/j.mechmat.2018.06.007.
D. Wang, P. Shanthraj, H. Springer, and D. Raabe. Particle-induced damage in Fe–TiB2 high stiffness metal matrix composite steels Materials and Design, 160:557–571, 2018. cited By 36. doi:10.1016/j.matdes.2018.09.033.
S. Yan, H. Zhou, B. Xing, S. Zhang, L. Li, and Q.H. Qin. Crystal plasticity in fusion zone of a hybrid laser welded Al alloys joint: From nanoscale to macroscale Materials and Design, 160:313–324, 2018. cited By 16. doi:10.1016/j.matdes.2018.09.031.
H. Zhang, J. Liu, D. Sui, Z. Cui, and M.W. Fu. Study of microstructural grain and geometric size effects on plastic heterogeneities at grain-level by using crystal plasticity modeling with high-fidelity representative microstructures International Journal of Plasticity, 100:69–89, 2018. cited By 71. doi:10.1016/j.ijplas.2017.09.011.
K. Balusu and H. Huang. A cpfem investigation of the effect of grain orientation on the surface profile during tensile plastic deformation of FCC polycrystals In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), volume 9. American Society of Mechanical Engineers (ASME), 2017. cited By 3. doi:10.1115/IMECE2017-71763.
Z. Boufaida, J. Boisse, S. André, and L. Farge. Mesoscopic strain field analysis in a woven composite using a spectral solver and 3D-DIC measurements Composite Structures, 160:604–612, 2017. cited By 27. doi:10.1016/j.compstruct.2016.10.030.
F. Briffod, T. Shiraiwa, and M. Enoki. Microstructure modeling and crystal plasticity simulations for the evaluation of fatigue crack initiation in α-iron specimen including an elliptic defect Materials Science and Engineering: A, 695:165–177, 2017. cited By 49. doi:10.1016/j.msea.2017.04.030.
F. Briffod, T. Shiraiwa, and M. Enoki. Microstructure-sensitive simulations of fatigue damage in dual-phase steel specimens including elliptic defect In ICF 2017 - 14th International Conference on Fracture, volume 2, 63–64. International Conference on Fracture, 2017. cited By 0. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066013827&partnerID=40&md5=7472cae60a8aa6f2affce80723501671.
A. Chakraborty and P. Eisenlohr. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations European Journal of Mechanics, A/Solids, 66:114–124, 2017. cited By 33. doi:10.1016/j.euromechsol.2017.06.012.
M. Diehl. Review and outlook: Mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale MRS Communications, 7(4):735–746, 2017. cited By 17. doi:10.1557/mrc.2017.98.
M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, and D. Raabe. Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure Physical Mesomechanics, 20(3):311–323, 2017. cited By 53. doi:10.1134/S1029959917030079.
M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, and F. Roters. A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations Integrating Materials and Manufacturing Innovation, 6(1):83–91, 2017. cited By 4. doi:10.1007/s40192-017-0084-5.
M. Diehl, M. Groeber, C. Haase, D.A. Molodov, F. Roters, and D. Raabe. Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach JOM, 69(5):848–855, 2017. cited By 66. doi:10.1007/s11837-017-2303-0.
M. Diehl, M. Wicke, P. Shanthraj, F. Roters, A. Brueckner-Foit, and D. Raabe. Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation JOM, 69(5):872–878, 2017. cited By 43. doi:10.1007/s11837-017-2308-8.
K. Gillner and S. Münstermann. Numerically predicted high cycle fatigue properties through representative volume elements of the microstructure International Journal of Fatigue, 105:219–234, 2017. cited By 32. doi:10.1016/j.ijfatigue.2017.09.002.
A. Irastorza-Landa, N. Grilli, and H. Van Swygenhoven. Effect of pre-existing immobile dislocations on the evolution of geometrically necessary dislocations during fatigue Modelling and Simulation in Materials Science and Engineering, 2017. cited By 14. doi:10.1088/1361-651X/aa6e24.
A. Irastorza-Landa, N. Grilli, and H. Van Swygenhoven. Laue micro-diffraction and crystal plasticity finite element simulations to reveal a vein structure in fatigued Cu Journal of the Mechanics and Physics of Solids, 104:157–171, 2017. cited By 11. doi:10.1016/j.jmps.2017.04.010.
M. Isaenkova, Y. Perlovich, D. Zhuk, and O. Krymskaya. Crystal plasticity simulation of Zirconium tube rolling using multi-grain representative volume element In AIP Conference Proceedings, volume 1896. American Institute of Physics Inc., 2017. cited By 3. doi:10.1063/1.5008198.
P. Jagtap and P. Kumar. Macro and micro-texture study for understanding whisker growth in Sn coatings In Proceedings of the 2016 IEEE 18th Electronics Packaging Technology Conference, EPTC 2016, 165–170. Institute of Electrical and Electronics Engineers Inc., 2017. cited By 2. doi:10.1109/EPTC.2016.7861464.
J. Jung, J.I. Yoon, J.G. Kim, M.I. Latypov, J.Y. Kim, and H.S. Kim. Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy npj Computational Materials, 2017. cited By 28. doi:10.1038/s41524-017-0023-1.
P. Kumar, I. Dutta, Z. Huang, and P. Conway. Microstructural and reliability issues of TSV Springer Series in Advanced Microelectronics, 57:71–99, 2017. cited By 6. doi:10.1007/978-3-319-44586-1_4.
S. Papanikolaou, J. Thibault, C. Woodward, P. Shanthraj, and F. Roters. Disorder-induced brittle to quasi-brittle crack initiation transition in notched crystals In ICF 2017 - 14th International Conference on Fracture, volume 2, 1032–1034. International Conference on Fracture, 2017. cited By 0. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066043608&partnerID=40&md5=03dcc4561dd8f296112106454b29b225.
U. Prahl, M. Lin, M. Weikamp, C. Hueter, D. Schicchi, M. Hunkel, and R. Spatschek. Multiscale, coupled chemo-mechanical modeling of bainitic transformation during press hardening Minerals, Metals and Materials Series, Part F4:335–343, 2017. cited By 3. doi:10.1007/978-3-319-57864-4_31.
D.-F. Zhu, S.-H. Tu, H.-S. Ma, and X.-W. Zhang. A 3D Voronoi and subdivision model for calibration of rock properties Modelling and Simulation in Materials Science and Engineering, 2017. cited By 20. doi:10.1088/1361-651X/aa8f19.
J.E. Bishop and H. Lim. Continuum approximations Springer Series in Materials Science, 245:89–129, 2016. cited By 2. doi:10.1007/978-3-319-33480-6_3.
T. Burczyński, M. Pietrzyk, W. Kuś, Ł. Madej, A. Mrozek, and Ł. Rauch. Multiscale Modelling and Optimisation of Materials and Structures. wiley, 2016. cited By 0. doi:10.1002/9781118536445.
D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, and J. Marian. Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations International Journal of Plasticity, 78:242–265, 2016. cited By 118. doi:10.1016/j.ijplas.2015.09.002.
A. Ebrahimi and T. Hochrainer. Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam In MRS Advances, volume 1, 1791–1796. Materials Research Society, 2016. cited By 4. doi:10.1557/adv.2016.75.
N. Jia, D. Raabe, and X. Zhao. Crystal plasticity modeling of size effects in rolled multilayered Cu-Nb composites Acta Materialia, 111:116–128, 2016. cited By 18. doi:10.1016/j.actamat.2016.03.055.
M. Lin and U. Prahl. A parallelized model for coupled phase field and crystal plasticity simulation Computer Methods in Materials Science, 16(3):156–162, 2016. cited By 7. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026316699&partnerID=40&md5=cbbb60ef2f8939953a19e81eb794082d.
D. Ma, P. Eisenlohr, E. Epler, C.A. Volkert, P. Shanthraj, M. Diehl, F. Roters, and D. Raabe. Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression Acta Materialia, 103:796–808, 2016. cited By 10. doi:10.1016/j.actamat.2015.11.016.
G. Nayyeri, W.J. Poole, C.W. Sinclair, S. Zaefferer, P.J. Konijnenberg, and C. Zambaldi. An instrumented spherical indentation study on high purity magnesium loaded nearly parallel to the c-axis Materials Science and Engineering: A, 670:132–145, 2016. cited By 11. doi:10.1016/j.msea.2016.05.112.
D. Raabe, F. Roters, J. Neugebauer, I. Gutierrez-Urrutia, T. Hickel, W. Bleck, J.M. Schneider, J.E. Wittig, and J. Mayer. Ab initio-guided design of twinning-induced plasticity steels MRS Bulletin, 41(4):320–325, 2016. cited By 25. doi:10.1557/mrs.2016.63.
P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, and D. Raabe. A phase field model for damage in elasto-viscoplastic materials Computer Methods in Applied Mechanics and Engineering, 312:167–185, 2016. cited By 66. doi:10.1016/j.cma.2016.05.006.
E. Werner, R. Wesenjak, A. Fillafer, F. Meier, and C. Krempaszky. Microstructure-based modelling of multiphase materials and complex structures Continuum Mechanics and Thermodynamics, 28(5):1325–1346, 2016. cited By 18. doi:10.1007/s00161-015-0477-7.
S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe. A crystal plasticity model for twinning- and transformation-induced plasticity Acta Materialia, 118:140–151, 2016. cited By 158. doi:10.1016/j.actamat.2016.07.032.
X. Wu, D. Ma, P. Eisenlohr, D. Raabe, and H.-O. Fabritius. From insect scales to sensor design: Modelling the mechanochromic properties of bicontinuous cubic structures Bioinspiration and Biomimetics, 2016. cited By 7. doi:10.1088/1748-3190/11/4/045001.
H. Zhang, M. Diehl, F. Roters, and D. Raabe. A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations International Journal of Plasticity, 80:111–138, 2016. cited By 133. doi:10.1016/j.ijplas.2016.01.002.
Y. Akinori. Prediction of 3D microstructure and plastic deformation behavior in dual-phase steel using multi-phase-field and crystal plasticity FFT methods Key Engineering Materials, 651-653:570–574, 2015. cited By 4. doi:10.4028/www.scientific.net/KEM.651-653.570.
B. Berisha, C. Raemy, C. Becker, M. Gorji, and P. Hora. Multiscale modeling of failure initiation in a ferritic-pearlitic steel Acta Materialia, 100:191–201, 2015. cited By 36. doi:10.1016/j.actamat.2015.08.035.
T.R. Bieler, D. Kang, D.C. Baars, S. Chandrasekaran, A. Mapar, G. Ciovati, N.T. Wright, F. Pourboghrat, J.E. Murphy, C.C. Compton, and G.R. Myneni. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium In AIP Conference Proceedings, volume 1687. American Institute of Physics Inc., 2015. cited By 2. doi:10.1063/1.4935316.
D. Cereceda, M. Diehl, F. Roters, P. Shanthraj, D. Raabe, J.M. Perlado, and J. Marian. Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal tungsten strength GAMM Mitteilungen, 38(2):213–227, 2015. cited By 11. doi:10.1002/gamm.201510012.
J. Gawad, D. Banabic, A. Van Bael, D.S. Comsa, M. Gologanu, P. Eyckens, P. Van Houtte, and D. Roose. An evolving plane stress yield criterion based on crystal plasticity virtual experiments International Journal of Plasticity, 75:141–169, 2015. cited By 54. doi:10.1016/j.ijplas.2015.02.011.
H. Geng, C. Ding, M. Lu, X. Zhou, X. Liu, Y. Fang, and J. Wang. Numerical simulation of mechanical properties of nickel base casting superalloy with the mesoscale finite element method Materials Research Innovations, 19:S5794–S5798, 2015. cited By 0. doi:10.1179/1432891714Z.0000000001195.
N. Grilli, K.G.F. Janssens, and H. Van Swygenhoven. Crystal plasticity finite element modelling of low cycle fatigue in fcc metals Journal of the Mechanics and Physics of Solids, 84:424–435, 2015. cited By 25. doi:10.1016/j.jmps.2015.08.007.
O. Güvenç, F. Roters, T. Hickel, and M. Bambach. ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance JOM, 67(1):120–128, 2015. cited By 25. doi:10.1007/s11837-014-1192-8.
S. Nikolov, H. Fabritius, M. Friák, and D. Raabe. Integrated multiscale modeling approach for hierarchical biological nanocomposites applied to lobster cuticle Bulgarian Chemical Communications, 47:424–433, 2015. cited By 3. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976421915&partnerID=40&md5=c066bed686cd2830463449e09d0cb40f.
P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters. Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials International Journal of Plasticity, 66:31–45, 2015. cited By 143. doi:10.1016/j.ijplas.2014.02.006.
Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, and D. Raabe. Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: Experiment and simulation Acta Materialia, 97:305–315, 2015. cited By 73. doi:10.1016/j.actamat.2015.06.053.
C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe. An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design Annual Review of Materials Research, 45:391–431, 2015. cited By 407. doi:10.1146/annurev-matsci-070214-021103.
D.D. Tjahjanto, P. Eisenlohr, and F. Roters. Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme Modelling and Simulation in Materials Science and Engineering, 2015. cited By 18. doi:10.1088/0965-0393/23/4/045005.
A. Yamanaka. 3D modeling of ferrite transformation in deformed-austenite using multi-phase-field method and crystal plasticity fast Fourier transformation method In PTM 2015 - Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, 857–864. International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2015, 2015. cited By 1. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962666685&partnerID=40&md5=571a59f1d99a503dc4fff94f47d04111.
A. Yamanaka. Prediction of deformed-and recrystallized microstructures in metallic materials by crystal plasticity analysis and multi-phase-field method Keikinzoku/Journal of Japan Institute of Light Metals, 65(11):542–548, 2015. cited By 2. doi:10.2464/jilm.65.542.
C. Zambaldi, C. Zehnder, and D. Raabe. Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation Acta Materialia, 91:267–288, 2015. cited By 70. doi:10.1016/j.actamat.2015.01.046.
C. Zhang, H. Li, P. Eisenlohr, W. Liu, C.J. Boehlert, M.A. Crimp, and T.R. Bieler. Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5Sn International Journal of Plasticity, 69:21–35, 2015. cited By 74. doi:10.1016/j.ijplas.2015.01.003.
M. Demura, D. Raabe, F. Roters, P. Eisenlohr, Y. Xu, T. Hirano, and K. Kishida. Slip system analysis in the cold rolling of a Ni3Al single crystal Materials Science Forum, 783-786:1111–1116, 2014. cited By 1. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904543366&partnerID=40&md5=518393546d612b593aa948b1de291f45.
O. Güvenç, M. Bambach, and G. Hirt. Coupling of crystal plasticity finite element and phase field methods for the prediction of SRX kinetics after hot working Steel Research International, 85(6):999–1009, 2014. cited By 23. doi:10.1002/srin.201300191.
R. Kebriaei, I.N. Vladimirov, and S. Reese. Joining of the alloys AA1050 and AA5754 - Experimental characterization and multiscale modeling based on a cohesive zone element technique Journal of Materials Processing Technology, 214(10):2146–2155, 2014. cited By 16. doi:10.1016/j.jmatprotec.2014.03.014.
F. Meier, C. Schwarz, and E. Werner. Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits Computational Materials Science, 94(C):122–131, 2014. cited By 20. doi:10.1016/j.commatsci.2014.03.020.
C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe. Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys Acta Materialia, 81:386–400, 2014. cited By 250. doi:10.1016/j.actamat.2014.07.071.
C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations International Journal of Plasticity, 63:198–210, 2014. cited By 379. doi:10.1016/j.ijplas.2014.06.004.
F. Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters, and D. Raabe. In situ observation of collective grain-scale mechanics in Mg and Mg-rare earth alloys Acta Materialia, 80:77–93, 2014. cited By 82. doi:10.1016/j.actamat.2014.07.048.
P. Eisenlohr, M. Diehl, R.A. Lebensohn, and F. Roters. A spectral method solution to crystal elasto-viscoplasticity at finite strains International Journal of Plasticity, 46:37–53, 2013. cited By 293. doi:10.1016/j.ijplas.2012.09.012.
F. Roters, M. Diehl, P. Eisenlohr, and D. Raabe. Crystal Plasticity Modeling. wiley, 2013. cited By 2. doi:10.1002/9783527652815.ch03.