"""
Filters for operations on regular grids.
The grids are defined as (x,y,z,...) where x is fastest and z is slowest.
This convention is consistent with the layout in grid vti files.
When converting to/from a plain list (e.g. storage in ASCII table),
the following operations are required for tensorial data:
- D3 = D1.reshape(cells+(-1,),order='F').reshape(cells+(3,3),order='C')
- D1 = D3.reshape(cells+(-1,),order='C').reshape(-1,9,order='F')
"""
from typing import (NamedTuple as _NamedTuple,
Tuple as _Tuple,
Union as _Union,
Literal as _Literal,
overload as _overload)
from scipy import spatial as _spatial
import numpy as _np
from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence
[docs]
class CellsSizeOriginTuple(_NamedTuple):
"""
Cells, size, and origin.
Coordinates of a regular grid can be constructed from this
information.
"""
cells: _np.ndarray
size: _np.ndarray
origin: _np.ndarray
[docs]
class RegridTuple(_NamedTuple):
idx: _np.ndarray
size: _np.ndarray
def _unique(values: _FloatSequence,
atol: float = 0.0,
repeats: bool = True) -> _np.ndarray:
"""
Recursively establish the (average) unique values that differ by more than the given tolerance.
Parameters
----------
values : sequence of float
Input values.
atol : float, optional
Absolute tolerance to consider values equivalent.
Defaults to 0.0.
repeats : bool, optional
Assume repeating values. Defaults to True.
Returns
-------
uniques : np.ndarray
Unique values among input that differ by more than the tolerance.
"""
v = _np.unique(values) if repeats else _np.asarray(values)
if atol == 0.0:
return v
else:
u = _np.unique(
_np.mean(
_np.ma.array(_np.broadcast_to(v,(v.size,v.size)),
mask=~_np.isclose(v[:,None],v[None,:],atol=atol)),
axis=-1)
)
return _unique(u,atol=atol,repeats=False) if _np.any(_np.diff(u) < atol) else u
def _ks(size: _FloatSequence,
cells: _IntSequence,
first_order: bool = False) -> _np.ndarray:
"""
Get wave numbers operator.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
cells : sequence of int, len (3)
Number of cells.
first_order : bool, optional
Correction for first order derivatives, defaults to False.
Returns
-------
k_s : np.ndarray, shape (:,:,:,3)
Wave number operator.
Notes
-----
Complex conjugate symmetry is considered. Hence,
the last dimension is cells[2]//2+1.
"""
k_sk = _np.where(_np.arange(cells[0])>cells[0]//2,
_np.arange(cells[0])-cells[0],_np.arange(cells[0]))/size[0]
if cells[0]%2 == 0 and first_order: k_sk[cells[0]//2] = 0 # Nyquist freq=0 for even cells (Johnson, MIT, 2011)
k_sj = _np.where(_np.arange(cells[1])>cells[1]//2,
_np.arange(cells[1])-cells[1],_np.arange(cells[1]))/size[1]
if cells[1]%2 == 0 and first_order: k_sj[cells[1]//2] = 0 # Nyquist freq=0 for even cells (Johnson, MIT, 2011)
k_si = _np.arange(cells[2]//2+1)/size[2]
return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1)
[docs]
def curl(size: _FloatSequence,
f: _np.ndarray) -> _np.ndarray:
u"""
Calculate curl of a vector or tensor field in Fourier space.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
Periodic field of which the curl is calculated.
Returns
-------
∇ × f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
Curl of f.
"""
n = _np.prod(f.shape[3:])
k_s = _ks(size,f.shape[:3],True)
e = _np.zeros((3, 3, 3))
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = +1.0 # Levi-Civita symbol
e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1.0
f_fourier = _np.fft.rfftn(f,axes=(0,1,2))
curl_ = (_np.einsum('slm,ijkl,ijkm ->ijks' if n == 3 else
'slm,ijkl,ijknm->ijksn',e,k_s,f_fourier)*2.0j*_np.pi) # vector 3->3, tensor 3x3->3x3
return _np.fft.irfftn(curl_,axes=(0,1,2),s=f.shape[:3])
[docs]
def divergence(size: _FloatSequence,
f: _np.ndarray) -> _np.ndarray:
u"""
Calculate divergence of a vector or tensor field in Fourier space.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
Periodic field of which the divergence is calculated.
Returns
-------
∇ · f : numpy.ndarray, shape (:,:,:,1) or (:,:,:,3)
Divergence of f.
"""
n = _np.prod(f.shape[3:])
k_s = _ks(size,f.shape[:3],True)
f_fourier = _np.fft.rfftn(f,axes=(0,1,2))
divergence_ = (_np.einsum('ijkl,ijkl ->ijk' if n == 3 else
'ijkm,ijklm->ijkl', k_s,f_fourier)*2.0j*_np.pi) # vector 3->1, tensor 3x3->3
return _np.fft.irfftn(divergence_,axes=(0,1,2),s=f.shape[:3])
[docs]
def gradient(size: _FloatSequence,
f: _np.ndarray) -> _np.ndarray:
u"""
Calculate gradient of a scalar or vector field in Fourier space.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
f : numpy.ndarray, shape (:,:,:,1) or (:,:,:,3)
Periodic field of which the gradient is calculated.
Returns
-------
∇ f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
Gradient of f.
"""
n = _np.prod(f.shape[3:])
k_s = _ks(size,f.shape[:3],True)
f_fourier = _np.fft.rfftn(f,axes=(0,1,2))
gradient_ = (_np.einsum('ijkl,ijkm->ijkm' if n == 1 else
'ijkl,ijkm->ijklm',f_fourier,k_s)*2.0j*_np.pi) # scalar 1->3, vector 3->3x3
return _np.fft.irfftn(gradient_,axes=(0,1,2),s=f.shape[:3])
[docs]
def coordinates0_point(cells: _IntSequence,
size: _FloatSequence,
origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
"""
Cell center positions (undeformed).
Parameters
----------
cells : sequence of int, len (3)
Number of cells.
size : sequence of float, len (3)
Physical size of the periodic field.
origin : sequence of float, len(3), optional
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
Returns
-------
x_p_0 : numpy.ndarray, shape (:,:,:,3)
Undeformed cell center coordinates.
"""
size_ = _np.array(size,float)
start = origin + size_/_np.array(cells,_np.int64)*.5
end = origin + size_ - size_/_np.array(cells,_np.int64)*.5
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],cells[0]),
_np.linspace(start[1],end[1],cells[1]),
_np.linspace(start[2],end[2],cells[2]),indexing = 'ij'),
axis = -1)
[docs]
def displacement_fluct_point(size: _FloatSequence,
F: _np.ndarray) -> _np.ndarray:
"""
Cell center displacement field from fluctuation part of the deformation gradient field.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
Returns
-------
u_p_fluct : numpy.ndarray, shape (:,:,:,3)
Fluctuating part of the cell center displacements.
"""
k_s = _ks(size,F.shape[:3],False)
k_s_squared = _np.einsum('...l,...l',k_s,k_s)
k_s_squared[0,0,0] = 1.0
displacement = -_np.einsum('ijkml,ijkl,l->ijkm',
_np.fft.rfftn(F,axes=(0,1,2)),
k_s,
_np.array([0.5j/_np.pi]*3),
) / k_s_squared[...,_np.newaxis]
return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
[docs]
def displacement_avg_point(size: _FloatSequence,
F: _np.ndarray) -> _np.ndarray:
"""
Cell center displacement field from average part of the deformation gradient field.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
Returns
-------
u_p_avg : numpy.ndarray, shape (:,:,:,3)
Average part of the cell center displacements.
"""
F_avg = _np.average(F,axis=(0,1,2))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_point(F.shape[:3],size))
[docs]
def displacement_point(size: _FloatSequence,
F: _np.ndarray) -> _np.ndarray:
"""
Cell center displacement field from deformation gradient field.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
Returns
-------
u_p : numpy.ndarray, shape (:,:,:,3)
Cell center displacements.
"""
return displacement_avg_point(size,F) + displacement_fluct_point(size,F)
[docs]
def coordinates_point(size: _FloatSequence,
F: _np.ndarray,
origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
"""
Cell center positions.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
origin : sequence of float, len(3), optional
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
Returns
-------
x_p : numpy.ndarray, shape (:,:,:,3)
Cell center coordinates.
"""
return coordinates0_point(F.shape[:3],size,origin) + displacement_point(size,F)
[docs]
def cellsSizeOrigin_coordinates0_point(coordinates0: _np.ndarray,
ordered: bool = True,
atol: float = 0.0) -> CellsSizeOriginTuple:
"""
Return grid 'DNA', i.e. cells, size, and origin from 1D array of point positions.
Parameters
----------
coordinates0 : numpy.ndarray, shape (:,3)
Undeformed cell center coordinates.
ordered : bool, optional
Expect coordinates0 data to be ordered (x fast, z slow).
Defaults to True.
atol : float, optional
Absolute tolerance to consider coordinates equivalent.
Defaults to 0.0.
Returns
-------
cells, size, origin : Three numpy.ndarray, each of shape (3)
Information to reconstruct grid.
Notes
-----
Cell size along single-cell dimensions is set to the geometric mean of remaining cell sizes.
Examples
--------
Cells, size, and origin of a 1 × 1 × 3 grid.
Cell sizes along x and y result as (the geometric mean of) the cell size along z.
>>> import numpy as np
>>> import damask
>>> damask.grid_filters.cellsSizeOrigin_coordinates0_point(np.array([[0,0,0],[0,0,4],[0,0,8]]))
CellsSizeOriginTuple(cells=array([1, 1, 3]), size=array([ 4., 4., 12.]), origin=array([-2., -2., -2.]))
"""
coords = [_unique(coordinates0[:,i],atol=atol,repeats=True) for i in range(3)]
mincorner = _np.array(list(map(min,coords)))
maxcorner = _np.array(list(map(max,coords)))
cells = _np.array(list(map(len,coords)),_np.int64)
size = cells/_np.maximum(cells-1,1) * (maxcorner-mincorner)
size[_np.where(cells == 1)] = _np.exp(_np.average(_np.log(size [_np.where(cells > 1)]
/cells[_np.where(cells > 1)])))
delta = size/cells
origin = mincorner - delta*.5
if cells.prod() != len(coordinates0):
raise ValueError(f'data count {len(coordinates0)} does not match cells {cells}')
start = origin + delta*.5
end = origin - delta*.5 + size
if _np.any([not _np.allclose(coords[i],_np.linspace(start[i],end[i],cells[i]),atol=atol) for i in range(3)]):
raise ValueError('non-uniform cell spacing')
if ordered and not _np.allclose(coordinates0.reshape(tuple(cells)+(3,),order='F'),
coordinates0_point(list(cells),size,origin),
atol=atol):
raise ValueError('input data is not properly ordered (x fast, z slow)')
return CellsSizeOriginTuple(cells,size,origin)
[docs]
def coordinates0_node(cells: _IntSequence,
size: _FloatSequence,
origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
"""
Nodal positions (undeformed).
Parameters
----------
cells : sequence of int, len (3)
Number of cells.
size : sequence of float, len (3)
Physical size of the periodic field.
origin : sequence of float, len(3), optional
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
Returns
-------
x_n_0 : numpy.ndarray, shape (:,:,:,3)
Undeformed nodal coordinates.
"""
return _np.stack(_np.meshgrid(_np.linspace(origin[0],size[0]+origin[0],cells[0]+1),
_np.linspace(origin[1],size[1]+origin[1],cells[1]+1),
_np.linspace(origin[2],size[2]+origin[2],cells[2]+1),indexing = 'ij'),
axis = -1)
[docs]
def displacement_fluct_node(size: _FloatSequence,
F: _np.ndarray) -> _np.ndarray:
"""
Nodal displacement field from fluctuation part of the deformation gradient field.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
Returns
-------
u_n_fluct : numpy.ndarray, shape (:,:,:,3)
Fluctuating part of the nodal displacements.
"""
return point_to_node(displacement_fluct_point(size,F))
[docs]
def displacement_avg_node(size: _FloatSequence,
F: _np.ndarray) -> _np.ndarray:
"""
Nodal displacement field from average part of the deformation gradient field.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
Returns
-------
u_n_avg : numpy.ndarray, shape (:,:,:,3)
Average part of the nodal displacements.
"""
F_avg = _np.average(F,axis=(0,1,2))
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_node(F.shape[:3],size))
[docs]
def displacement_node(size: _FloatSequence,
F: _np.ndarray) -> _np.ndarray:
"""
Nodal displacement field from deformation gradient field.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
Returns
-------
u_n : numpy.ndarray, shape (:,:,:,3)
Nodal displacements.
"""
return displacement_avg_node(size,F) + displacement_fluct_node(size,F)
[docs]
def coordinates_node(size: _FloatSequence,
F: _np.ndarray,
origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
"""
Nodal positions.
Parameters
----------
size : sequence of float, len (3)
Physical size of the periodic field.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field.
origin : sequence of float, len(3), optional
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
Returns
-------
x_n : numpy.ndarray, shape (:,:,:,3)
Nodal coordinates.
"""
return coordinates0_node(F.shape[:3],size,origin) + displacement_node(size,F)
[docs]
def cellsSizeOrigin_coordinates0_node(coordinates0: _np.ndarray,
ordered: bool = True,
atol: float = 0.0) -> CellsSizeOriginTuple:
"""
Return grid 'DNA', i.e. cells, size, and origin from 1D array of nodal positions.
Parameters
----------
coordinates0 : numpy.ndarray, shape (:,3)
Undeformed nodal coordinates.
ordered : bool, optional
Expect coordinates0 data to be ordered (x fast, z slow).
Defaults to True.
atol : float, optional
Absolute tolerance to consider coordinates equivalent.
Defaults to 0.0.
Returns
-------
cells, size, origin : Three numpy.ndarray, each of shape (3)
Information to reconstruct grid.
"""
coords = [_unique(coordinates0[:,i],atol=atol,repeats=True) for i in range(3)]
mincorner = _np.array(list(map(min,coords)))
maxcorner = _np.array(list(map(max,coords)))
cells = _np.array(list(map(len,coords)),_np.int64) - 1
size = maxcorner-mincorner
origin = mincorner
if (cells+1).prod() != len(coordinates0):
raise ValueError(f'data count {len(coordinates0)} does not match cells {cells}')
if _np.any([not _np.allclose(coords[i],_np.linspace(mincorner[i],maxcorner[i],cells[i]+1),atol=atol) for i in range(3)]):
raise ValueError('non-uniform cell spacing')
if ordered and not _np.allclose(coordinates0.reshape(tuple(cells+1)+(3,),order='F'),
coordinates0_node(list(cells),size,origin),
atol=atol):
raise ValueError('input data is not properly ordered (x fast, z slow)')
return CellsSizeOriginTuple(cells,size,origin)
[docs]
def point_to_node(cell_data: _np.ndarray) -> _np.ndarray:
"""
Interpolate periodic point data to nodal data.
Parameters
----------
cell_data : numpy.ndarray, shape (:,:,:,...)
Data defined on the cell centers of a periodic grid.
Returns
-------
node_data : numpy.ndarray, shape (:,:,:,...)
Data defined on the nodes of a periodic grid.
"""
n = ( cell_data + _np.roll(cell_data,1,(0,1,2))
+ _np.roll(cell_data,1,(0,)) + _np.roll(cell_data,1,(1,)) + _np.roll(cell_data,1,(2,))
+ _np.roll(cell_data,1,(0,1)) + _np.roll(cell_data,1,(1,2)) + _np.roll(cell_data,1,(2,0)))*0.125
return _np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
[docs]
def node_to_point(node_data: _np.ndarray) -> _np.ndarray:
"""
Interpolate periodic nodal data to point data.
Parameters
----------
node_data : numpy.ndarray, shape (:,:,:,...)
Data defined on the nodes of a periodic grid.
Returns
-------
cell_data : numpy.ndarray, shape (:,:,:,...)
Data defined on the cell centers of a periodic grid.
"""
c = ( node_data + _np.roll(node_data,1,(0,1,2))
+ _np.roll(node_data,1,(0,)) + _np.roll(node_data,1,(1,)) + _np.roll(node_data,1,(2,))
+ _np.roll(node_data,1,(0,1)) + _np.roll(node_data,1,(1,2)) + _np.roll(node_data,1,(2,0)))*0.125
return c[1:,1:,1:]
[docs]
def coordinates0_valid(coordinates0: _np.ndarray,
atol: float = 0.0) -> bool:
"""
Check whether coordinates form a regular grid.
Parameters
----------
coordinates0 : numpy.ndarray, shape (:,3)
Array of undeformed cell coordinates.
atol : float, optional
Absolute tolerance to consider coordinates equivalent.
Defaults to 0.0.
Returns
-------
valid : bool
Whether the coordinates form a regular grid.
"""
try:
cellsSizeOrigin_coordinates0_point(coordinates0,ordered=True,atol=atol)
return True
except ValueError:
return False
[docs]
def ravel_index(idx: _np.ndarray) -> _np.ndarray:
"""
Convert coordinate indices to flat indices.
Parameters
----------
idx : numpy.ndarray, shape (:,:,:,3)
Grid of coordinate indices.
Returns
-------
ravelled : numpy.ndarray, shape (:,:,:)
Grid of flat indices.
Examples
--------
Ravel a reversed sequence of coordinate indices on a 2 × 2 × 1 grid.
>>> import numpy as np
>>> import damask
>>> (rev := np.array([[1,1,0],[0,1,0],[1,0,0],[0,0,0]]).reshape((2,2,1,3)))
array([[[[1, 1, 0]],
[[0, 1, 0]]],
[[[1, 0, 0]],
[[0, 0, 0]]]])
>>> (flat_idx := damask.grid_filters.ravel_index(rev))
array([[[3],
[2]],
[[1],
[0]]])
"""
cells = idx.shape[:3]
return ( idx[:,:,:,0]
+ idx[:,:,:,1]*cells[0]
+ idx[:,:,:,2]*cells[0]*cells[1])
[docs]
def unravel_index(idx: _np.ndarray) -> _np.ndarray:
"""
Convert flat indices to coordinate indices.
Parameters
----------
idx : numpy.ndarray, shape (:,:,:)
Grid of flat indices.
Returns
-------
unravelled : numpy.ndarray, shape (:,:,:,3)
Grid of coordinate indices.
Examples
--------
Unravel a linearly increasing sequence of material indices on a 3 × 2 × 1 grid.
>>> import numpy as np
>>> import damask
>>> seq = np.arange(6).reshape((3,2,1),order='F')
>>> (coord_idx := damask.grid_filters.unravel_index(seq))
array([[[[0, 0, 0]],
[[0, 1, 0]]],
[[[1, 0, 0]],
[[1, 1, 0]]],
[[[2, 0, 0]],
[[2, 1, 0]]]])
>>> coord_idx[1,1,0]
array([1, 1, 0])
"""
cells = idx.shape
idx_ = _np.expand_dims(idx,3)
return _np.block([ idx_ %cells[0],
(idx_//cells[0]) %cells[1],
((idx_//cells[0])//cells[1])%cells[2]])
[docs]
def ravel(d_unraveled: _np.ndarray,
flatten: bool = False) -> _np.ndarray:
"""
Convert unraveled data (3D) to raveled representation (1D).
Parameters
----------
d_unraveled : numpy.ndarray, shape (:,:,:,...)
Unraveled data, three-dimensional along leading dimensions.
flatten : bool, optional
Flatten data, i.e. enforce two-dimensional array.
Returns
-------
d_raveled : numpy.ndarray, shape (:,...)
Raveled data, one-dimensional along leading dimension.
"""
d = d_unraveled.reshape((-1,)+d_unraveled.shape[3:],order='F').copy() # NumPy > 2.1 has copy arg
return (d.reshape(d.shape[:1]+(-1,)) if flatten else d)
[docs]
def unravel(d_raveled: _np.ndarray,
cells: _IntSequence,
flatten: bool = False) -> _np.ndarray:
"""
Convert raveled data (1D) to unraveled representation (3D).
Parameters
----------
d_raveled : numpy.ndarray, shape (:,...)
Raveled data, one-dimensional along leading dimension.
cells : sequence of int, len (3)
Number of cells.
flatten : bool, optional
Flatten data, i.e. enforce four-dimensional array.
Returns
-------
d_unraveled : numpy.ndarray, shape (:,:,:,...)
Unraveled data, three-dimensional along leading dimensions.
"""
d = d_raveled.reshape(tuple(cells)+d_raveled.shape[1:],order='F').copy() # NumPy > 2.1 has copy arg
return (d.reshape(d.shape[:3]+(-1,)) if flatten else d)
@_overload
def regrid(size: _FloatSequence,
F: _np.ndarray,
cells: _IntSequence,
max_coeff: int = 3,
max_candidates: _Union[None, int] = 200,
return_size: _Literal[False] = False) -> _np.ndarray:
...
@_overload
def regrid(size: _FloatSequence,
F: _np.ndarray,
cells: _IntSequence,
max_coeff: int = 3,
max_candidates: _Union[None, int] = 200,
return_size: _Literal[True] = True) -> RegridTuple:
...
[docs]
def regrid(size: _FloatSequence,
F: _np.ndarray,
cells: _IntSequence,
max_coeff: int = 3,
max_candidates: _Union[None, int] = 200,
return_size: bool = False) -> _Union[_np.ndarray,RegridTuple]:
"""
Map a deformed grid A back to a rectilinear grid B.
The size of grid B is chosen as the smallest periodic box that holds the deformed grid A.
Parameters
----------
size : sequence of float, len (3)
Physical size of grid A.
F : numpy.ndarray, shape (:,:,:,3,3)
Deformation gradient field on grid A.
cells : sequence of int, len (3)
Cell count along x,y,z of grid B.
max_coeff : int, optional
Largest multiplier in the linear combinations of deformed edges of grid A that are
used as basis vectors in search for an aligned orthogonal frame of grid B.
Defaults to 3.
max_candidates : int, optional
Number of shortest candidate vectors to include in search.
Defaults to 200. 'None' means all possible candidates (up to max_coeff) are checked.
return_size : bool, optional
If True, also return the size of grid B.
Defaults to False.
Returns
-------
idx : numpy.ndarray of int, shape (cells)
Flat index of closest point on deformed grid A for each point on grid B.
size : numpy.ndarray of float, shape (3), optional
Physical size of grid B, if return_size is True.
"""
def shortest_linear_combinations(bases: _np.ndarray,
max_coeff: int,
max_candidates: _Union[None, int] = None) -> _np.ndarray:
"""
Generate candidate vectors as linear combinations of basis vectors.
Parameters
----------
bases : np.ndarray, shape(d,d)
Basis vectors (as rows).
max_coeff : int
Largest multiplier in linear combinations among basis vectors.
max_candidates : int, optional
Number of shortest linear combinations to return.
Defaults to None, which means all possible linear combinations are returned.
Returns
-------
combinations : np.ndarray, shape(m,d)
Sorted shortest linear combinations of basis vectors.
"""
coeffs = range(-max_coeff, max_coeff+1)
coeffs_arr = _np.stack([n.ravel() for n in _np.meshgrid(*[coeffs]*len(bases),indexing='ij')],
axis=1)
coeffs_arr = coeffs_arr[_np.any(coeffs_arr != 0, axis=1)] # remove zero tuple
vecs = coeffs_arr @ bases # lattice vectors
if max_candidates is not None:
norms = _np.linalg.norm(vecs, axis=1)
idx = _np.argpartition(norms, max_candidates-1)[:max_candidates] # O(N), not full sort
vecs = vecs[idx[_np.argsort(norms[idx])]] # sort those by actual norm and use as index
return vecs
def shortest_aligned(vectors: _np.ndarray) -> dict:
"""
From a set of 3D vectors, find the shortest vector aligned with each global basis vector.
'Aligned with a basis' means that only that vector component is nonzero
(within tolerance). Example: [1.42,0,0] is aligned with the x-axis,
whereas [3.2,0,1.1] is not aligned with any axis.
Parameters
----------
vectors : array-like, shape (N, 3)
List/array of 3D vectors.
Returns
-------
result : dict
Keys: 'x', 'y', 'z'.
Values: shortest aligned vector (np.ndarray of shape (3,)) or None if none found.
"""
arr = _np.asarray(vectors, dtype=float)
result = {'x': None, 'y': None, 'z': None}
for idx,axis in enumerate(result.keys()):
aligned = arr[_np.all(_np.isclose(_np.delete(arr,idx,axis=1),0.0,atol=1e-12),axis=1)]
if aligned.size != 0: result[axis] = aligned[_np.argmin(_np.linalg.norm(aligned,axis=1))]
return result
def repeat_points(points: _np.ndarray,
repeats: _np.ndarray,
shifts: _np.ndarray) -> _Tuple[_np.ndarray, _np.ndarray]:
"""
Expand a point cloud by repeating it along x, y, z.
Parameters
----------
points : array-like, shape (N,3)
Original point cloud.
repeats : int, len (3)
Number of repeats along (x, y, z). Must be >= 1.
shifts : array-like, shape (3,3)
Shift vector per repeat along each axis.
Returns
-------
expanded : numpy.ndarray, shape (N*prod(repeats),3)
Expanded point cloud with translated copies.
origin_indices : numpy.ndarray, shape (N*prod(repeats),)
For each expanded point, the index of the point in the original cloud it came from.
"""
idx = _np.array(_np.meshgrid(*[_np.arange(r) for r in repeats], indexing='ij')).reshape(3, -1).T
deltas = idx @ _np.asarray(shifts)
expanded_points = (_np.asarray(points)[:, None, :] +
deltas[None, :, :]).reshape(-1, 3)
origin_indices = _np.repeat(_np.arange(len(points)), deltas.shape[0])
return (expanded_points,origin_indices)
F_avg = _np.average(F,axis=(0,1,2))
bases = (size*F_avg).T
shortest = shortest_aligned(
shortest_linear_combinations(
bases=bases,
max_coeff=max_coeff,
max_candidates=max_candidates,
)
)
if any(v is None for v in shortest.values()):
raise ValueError('Cannot find orthogonal basis for average deformation gradient\n'
f'{F_avg} acting on box {size}')
box = _np.linalg.norm(_np.array([shortest['x'], shortest['y'], shortest['z']]), axis=1)
repeats = (_np.ceil(box/size/F_avg.diagonal())).astype(int)
c,ids = repeat_points(
points=coordinates_point(size,F).reshape((-1,3),order='F'),
repeats=repeats,
shifts=bases,
)
idx = ids[_spatial.cKDTree(c%box,boxsize=box).query(coordinates0_point(cells,box))[1]]
return RegridTuple(idx, box) if return_size else idx