Source code for damask.grid_filters

"""
Filters for operations on regular grids.

The grids are defined as (x,y,z,...) where x is fastest and z is slowest.
This convention is consistent with the layout in grid vti files.

When converting to/from a plain list (e.g. storage in ASCII table),
the following operations are required for tensorial data:

    - D3 = D1.reshape(cells+(-1,),order='F').reshape(cells+(3,3),order='C')
    - D1 = D3.reshape(cells+(-1,),order='C').reshape(-1,9,order='F')
"""

from typing import (NamedTuple as _NamedTuple,
                    Tuple as _Tuple,
                    Union as _Union,
                    Literal as _Literal,
                    overload as _overload)

from scipy import spatial as _spatial
import numpy as _np

from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence


[docs] class CellsSizeOriginTuple(_NamedTuple): """ Cells, size, and origin. Coordinates of a regular grid can be constructed from this information. """ cells: _np.ndarray size: _np.ndarray origin: _np.ndarray
[docs] class RegridTuple(_NamedTuple): idx: _np.ndarray size: _np.ndarray
def _unique(values: _FloatSequence, atol: float = 0.0, repeats: bool = True) -> _np.ndarray: """ Recursively establish the (average) unique values that differ by more than the given tolerance. Parameters ---------- values : sequence of float Input values. atol : float, optional Absolute tolerance to consider values equivalent. Defaults to 0.0. repeats : bool, optional Assume repeating values. Defaults to True. Returns ------- uniques : np.ndarray Unique values among input that differ by more than the tolerance. """ v = _np.unique(values) if repeats else _np.asarray(values) if atol == 0.0: return v else: u = _np.unique( _np.mean( _np.ma.array(_np.broadcast_to(v,(v.size,v.size)), mask=~_np.isclose(v[:,None],v[None,:],atol=atol)), axis=-1) ) return _unique(u,atol=atol,repeats=False) if _np.any(_np.diff(u) < atol) else u def _ks(size: _FloatSequence, cells: _IntSequence, first_order: bool = False) -> _np.ndarray: """ Get wave numbers operator. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. cells : sequence of int, len (3) Number of cells. first_order : bool, optional Correction for first order derivatives, defaults to False. Returns ------- k_s : np.ndarray, shape (:,:,:,3) Wave number operator. Notes ----- Complex conjugate symmetry is considered. Hence, the last dimension is cells[2]//2+1. """ k_sk = _np.where(_np.arange(cells[0])>cells[0]//2, _np.arange(cells[0])-cells[0],_np.arange(cells[0]))/size[0] if cells[0]%2 == 0 and first_order: k_sk[cells[0]//2] = 0 # Nyquist freq=0 for even cells (Johnson, MIT, 2011) k_sj = _np.where(_np.arange(cells[1])>cells[1]//2, _np.arange(cells[1])-cells[1],_np.arange(cells[1]))/size[1] if cells[1]%2 == 0 and first_order: k_sj[cells[1]//2] = 0 # Nyquist freq=0 for even cells (Johnson, MIT, 2011) k_si = _np.arange(cells[2]//2+1)/size[2] return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1)
[docs] def curl(size: _FloatSequence, f: _np.ndarray) -> _np.ndarray: u""" Calculate curl of a vector or tensor field in Fourier space. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3) Periodic field of which the curl is calculated. Returns ------- ∇ × f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3) Curl of f. """ n = _np.prod(f.shape[3:]) k_s = _ks(size,f.shape[:3],True) e = _np.zeros((3, 3, 3)) e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = +1.0 # Levi-Civita symbol e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1.0 f_fourier = _np.fft.rfftn(f,axes=(0,1,2)) curl_ = (_np.einsum('slm,ijkl,ijkm ->ijks' if n == 3 else 'slm,ijkl,ijknm->ijksn',e,k_s,f_fourier)*2.0j*_np.pi) # vector 3->3, tensor 3x3->3x3 return _np.fft.irfftn(curl_,axes=(0,1,2),s=f.shape[:3])
[docs] def divergence(size: _FloatSequence, f: _np.ndarray) -> _np.ndarray: u""" Calculate divergence of a vector or tensor field in Fourier space. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3) Periodic field of which the divergence is calculated. Returns ------- ∇ · f : numpy.ndarray, shape (:,:,:,1) or (:,:,:,3) Divergence of f. """ n = _np.prod(f.shape[3:]) k_s = _ks(size,f.shape[:3],True) f_fourier = _np.fft.rfftn(f,axes=(0,1,2)) divergence_ = (_np.einsum('ijkl,ijkl ->ijk' if n == 3 else 'ijkm,ijklm->ijkl', k_s,f_fourier)*2.0j*_np.pi) # vector 3->1, tensor 3x3->3 return _np.fft.irfftn(divergence_,axes=(0,1,2),s=f.shape[:3])
[docs] def gradient(size: _FloatSequence, f: _np.ndarray) -> _np.ndarray: u""" Calculate gradient of a scalar or vector field in Fourier space. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. f : numpy.ndarray, shape (:,:,:,1) or (:,:,:,3) Periodic field of which the gradient is calculated. Returns ------- ∇ f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3) Gradient of f. """ n = _np.prod(f.shape[3:]) k_s = _ks(size,f.shape[:3],True) f_fourier = _np.fft.rfftn(f,axes=(0,1,2)) gradient_ = (_np.einsum('ijkl,ijkm->ijkm' if n == 1 else 'ijkl,ijkm->ijklm',f_fourier,k_s)*2.0j*_np.pi) # scalar 1->3, vector 3->3x3 return _np.fft.irfftn(gradient_,axes=(0,1,2),s=f.shape[:3])
[docs] def coordinates0_point(cells: _IntSequence, size: _FloatSequence, origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray: """ Cell center positions (undeformed). Parameters ---------- cells : sequence of int, len (3) Number of cells. size : sequence of float, len (3) Physical size of the periodic field. origin : sequence of float, len(3), optional Physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Returns ------- x_p_0 : numpy.ndarray, shape (:,:,:,3) Undeformed cell center coordinates. """ size_ = _np.array(size,float) start = origin + size_/_np.array(cells,_np.int64)*.5 end = origin + size_ - size_/_np.array(cells,_np.int64)*.5 return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],cells[0]), _np.linspace(start[1],end[1],cells[1]), _np.linspace(start[2],end[2],cells[2]),indexing = 'ij'), axis = -1)
[docs] def displacement_fluct_point(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray: """ Cell center displacement field from fluctuation part of the deformation gradient field. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. Returns ------- u_p_fluct : numpy.ndarray, shape (:,:,:,3) Fluctuating part of the cell center displacements. """ k_s = _ks(size,F.shape[:3],False) k_s_squared = _np.einsum('...l,...l',k_s,k_s) k_s_squared[0,0,0] = 1.0 displacement = -_np.einsum('ijkml,ijkl,l->ijkm', _np.fft.rfftn(F,axes=(0,1,2)), k_s, _np.array([0.5j/_np.pi]*3), ) / k_s_squared[...,_np.newaxis] return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
[docs] def displacement_avg_point(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray: """ Cell center displacement field from average part of the deformation gradient field. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. Returns ------- u_p_avg : numpy.ndarray, shape (:,:,:,3) Average part of the cell center displacements. """ F_avg = _np.average(F,axis=(0,1,2)) return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_point(F.shape[:3],size))
[docs] def displacement_point(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray: """ Cell center displacement field from deformation gradient field. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. Returns ------- u_p : numpy.ndarray, shape (:,:,:,3) Cell center displacements. """ return displacement_avg_point(size,F) + displacement_fluct_point(size,F)
[docs] def coordinates_point(size: _FloatSequence, F: _np.ndarray, origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray: """ Cell center positions. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. origin : sequence of float, len(3), optional Physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Returns ------- x_p : numpy.ndarray, shape (:,:,:,3) Cell center coordinates. """ return coordinates0_point(F.shape[:3],size,origin) + displacement_point(size,F)
[docs] def cellsSizeOrigin_coordinates0_point(coordinates0: _np.ndarray, ordered: bool = True, atol: float = 0.0) -> CellsSizeOriginTuple: """ Return grid 'DNA', i.e. cells, size, and origin from 1D array of point positions. Parameters ---------- coordinates0 : numpy.ndarray, shape (:,3) Undeformed cell center coordinates. ordered : bool, optional Expect coordinates0 data to be ordered (x fast, z slow). Defaults to True. atol : float, optional Absolute tolerance to consider coordinates equivalent. Defaults to 0.0. Returns ------- cells, size, origin : Three numpy.ndarray, each of shape (3) Information to reconstruct grid. Notes ----- Cell size along single-cell dimensions is set to the geometric mean of remaining cell sizes. Examples -------- Cells, size, and origin of a 1 × 1 × 3 grid. Cell sizes along x and y result as (the geometric mean of) the cell size along z. >>> import numpy as np >>> import damask >>> damask.grid_filters.cellsSizeOrigin_coordinates0_point(np.array([[0,0,0],[0,0,4],[0,0,8]])) CellsSizeOriginTuple(cells=array([1, 1, 3]), size=array([ 4., 4., 12.]), origin=array([-2., -2., -2.])) """ coords = [_unique(coordinates0[:,i],atol=atol,repeats=True) for i in range(3)] mincorner = _np.array(list(map(min,coords))) maxcorner = _np.array(list(map(max,coords))) cells = _np.array(list(map(len,coords)),_np.int64) size = cells/_np.maximum(cells-1,1) * (maxcorner-mincorner) size[_np.where(cells == 1)] = _np.exp(_np.average(_np.log(size [_np.where(cells > 1)] /cells[_np.where(cells > 1)]))) delta = size/cells origin = mincorner - delta*.5 if cells.prod() != len(coordinates0): raise ValueError(f'data count {len(coordinates0)} does not match cells {cells}') start = origin + delta*.5 end = origin - delta*.5 + size if _np.any([not _np.allclose(coords[i],_np.linspace(start[i],end[i],cells[i]),atol=atol) for i in range(3)]): raise ValueError('non-uniform cell spacing') if ordered and not _np.allclose(coordinates0.reshape(tuple(cells)+(3,),order='F'), coordinates0_point(list(cells),size,origin), atol=atol): raise ValueError('input data is not properly ordered (x fast, z slow)') return CellsSizeOriginTuple(cells,size,origin)
[docs] def coordinates0_node(cells: _IntSequence, size: _FloatSequence, origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray: """ Nodal positions (undeformed). Parameters ---------- cells : sequence of int, len (3) Number of cells. size : sequence of float, len (3) Physical size of the periodic field. origin : sequence of float, len(3), optional Physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Returns ------- x_n_0 : numpy.ndarray, shape (:,:,:,3) Undeformed nodal coordinates. """ return _np.stack(_np.meshgrid(_np.linspace(origin[0],size[0]+origin[0],cells[0]+1), _np.linspace(origin[1],size[1]+origin[1],cells[1]+1), _np.linspace(origin[2],size[2]+origin[2],cells[2]+1),indexing = 'ij'), axis = -1)
[docs] def displacement_fluct_node(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray: """ Nodal displacement field from fluctuation part of the deformation gradient field. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. Returns ------- u_n_fluct : numpy.ndarray, shape (:,:,:,3) Fluctuating part of the nodal displacements. """ return point_to_node(displacement_fluct_point(size,F))
[docs] def displacement_avg_node(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray: """ Nodal displacement field from average part of the deformation gradient field. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. Returns ------- u_n_avg : numpy.ndarray, shape (:,:,:,3) Average part of the nodal displacements. """ F_avg = _np.average(F,axis=(0,1,2)) return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_node(F.shape[:3],size))
[docs] def displacement_node(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray: """ Nodal displacement field from deformation gradient field. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. Returns ------- u_n : numpy.ndarray, shape (:,:,:,3) Nodal displacements. """ return displacement_avg_node(size,F) + displacement_fluct_node(size,F)
[docs] def coordinates_node(size: _FloatSequence, F: _np.ndarray, origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray: """ Nodal positions. Parameters ---------- size : sequence of float, len (3) Physical size of the periodic field. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field. origin : sequence of float, len(3), optional Physical origin of the periodic field. Defaults to [0.0,0.0,0.0]. Returns ------- x_n : numpy.ndarray, shape (:,:,:,3) Nodal coordinates. """ return coordinates0_node(F.shape[:3],size,origin) + displacement_node(size,F)
[docs] def cellsSizeOrigin_coordinates0_node(coordinates0: _np.ndarray, ordered: bool = True, atol: float = 0.0) -> CellsSizeOriginTuple: """ Return grid 'DNA', i.e. cells, size, and origin from 1D array of nodal positions. Parameters ---------- coordinates0 : numpy.ndarray, shape (:,3) Undeformed nodal coordinates. ordered : bool, optional Expect coordinates0 data to be ordered (x fast, z slow). Defaults to True. atol : float, optional Absolute tolerance to consider coordinates equivalent. Defaults to 0.0. Returns ------- cells, size, origin : Three numpy.ndarray, each of shape (3) Information to reconstruct grid. """ coords = [_unique(coordinates0[:,i],atol=atol,repeats=True) for i in range(3)] mincorner = _np.array(list(map(min,coords))) maxcorner = _np.array(list(map(max,coords))) cells = _np.array(list(map(len,coords)),_np.int64) - 1 size = maxcorner-mincorner origin = mincorner if (cells+1).prod() != len(coordinates0): raise ValueError(f'data count {len(coordinates0)} does not match cells {cells}') if _np.any([not _np.allclose(coords[i],_np.linspace(mincorner[i],maxcorner[i],cells[i]+1),atol=atol) for i in range(3)]): raise ValueError('non-uniform cell spacing') if ordered and not _np.allclose(coordinates0.reshape(tuple(cells+1)+(3,),order='F'), coordinates0_node(list(cells),size,origin), atol=atol): raise ValueError('input data is not properly ordered (x fast, z slow)') return CellsSizeOriginTuple(cells,size,origin)
[docs] def point_to_node(cell_data: _np.ndarray) -> _np.ndarray: """ Interpolate periodic point data to nodal data. Parameters ---------- cell_data : numpy.ndarray, shape (:,:,:,...) Data defined on the cell centers of a periodic grid. Returns ------- node_data : numpy.ndarray, shape (:,:,:,...) Data defined on the nodes of a periodic grid. """ n = ( cell_data + _np.roll(cell_data,1,(0,1,2)) + _np.roll(cell_data,1,(0,)) + _np.roll(cell_data,1,(1,)) + _np.roll(cell_data,1,(2,)) + _np.roll(cell_data,1,(0,1)) + _np.roll(cell_data,1,(1,2)) + _np.roll(cell_data,1,(2,0)))*0.125 return _np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
[docs] def node_to_point(node_data: _np.ndarray) -> _np.ndarray: """ Interpolate periodic nodal data to point data. Parameters ---------- node_data : numpy.ndarray, shape (:,:,:,...) Data defined on the nodes of a periodic grid. Returns ------- cell_data : numpy.ndarray, shape (:,:,:,...) Data defined on the cell centers of a periodic grid. """ c = ( node_data + _np.roll(node_data,1,(0,1,2)) + _np.roll(node_data,1,(0,)) + _np.roll(node_data,1,(1,)) + _np.roll(node_data,1,(2,)) + _np.roll(node_data,1,(0,1)) + _np.roll(node_data,1,(1,2)) + _np.roll(node_data,1,(2,0)))*0.125 return c[1:,1:,1:]
[docs] def coordinates0_valid(coordinates0: _np.ndarray, atol: float = 0.0) -> bool: """ Check whether coordinates form a regular grid. Parameters ---------- coordinates0 : numpy.ndarray, shape (:,3) Array of undeformed cell coordinates. atol : float, optional Absolute tolerance to consider coordinates equivalent. Defaults to 0.0. Returns ------- valid : bool Whether the coordinates form a regular grid. """ try: cellsSizeOrigin_coordinates0_point(coordinates0,ordered=True,atol=atol) return True except ValueError: return False
[docs] def ravel_index(idx: _np.ndarray) -> _np.ndarray: """ Convert coordinate indices to flat indices. Parameters ---------- idx : numpy.ndarray, shape (:,:,:,3) Grid of coordinate indices. Returns ------- ravelled : numpy.ndarray, shape (:,:,:) Grid of flat indices. Examples -------- Ravel a reversed sequence of coordinate indices on a 2 × 2 × 1 grid. >>> import numpy as np >>> import damask >>> (rev := np.array([[1,1,0],[0,1,0],[1,0,0],[0,0,0]]).reshape((2,2,1,3))) array([[[[1, 1, 0]], [[0, 1, 0]]], [[[1, 0, 0]], [[0, 0, 0]]]]) >>> (flat_idx := damask.grid_filters.ravel_index(rev)) array([[[3], [2]], [[1], [0]]]) """ cells = idx.shape[:3] return ( idx[:,:,:,0] + idx[:,:,:,1]*cells[0] + idx[:,:,:,2]*cells[0]*cells[1])
[docs] def unravel_index(idx: _np.ndarray) -> _np.ndarray: """ Convert flat indices to coordinate indices. Parameters ---------- idx : numpy.ndarray, shape (:,:,:) Grid of flat indices. Returns ------- unravelled : numpy.ndarray, shape (:,:,:,3) Grid of coordinate indices. Examples -------- Unravel a linearly increasing sequence of material indices on a 3 × 2 × 1 grid. >>> import numpy as np >>> import damask >>> seq = np.arange(6).reshape((3,2,1),order='F') >>> (coord_idx := damask.grid_filters.unravel_index(seq)) array([[[[0, 0, 0]], [[0, 1, 0]]], [[[1, 0, 0]], [[1, 1, 0]]], [[[2, 0, 0]], [[2, 1, 0]]]]) >>> coord_idx[1,1,0] array([1, 1, 0]) """ cells = idx.shape idx_ = _np.expand_dims(idx,3) return _np.block([ idx_ %cells[0], (idx_//cells[0]) %cells[1], ((idx_//cells[0])//cells[1])%cells[2]])
[docs] def ravel(d_unraveled: _np.ndarray, flatten: bool = False) -> _np.ndarray: """ Convert unraveled data (3D) to raveled representation (1D). Parameters ---------- d_unraveled : numpy.ndarray, shape (:,:,:,...) Unraveled data, three-dimensional along leading dimensions. flatten : bool, optional Flatten data, i.e. enforce two-dimensional array. Returns ------- d_raveled : numpy.ndarray, shape (:,...) Raveled data, one-dimensional along leading dimension. """ d = d_unraveled.reshape((-1,)+d_unraveled.shape[3:],order='F').copy() # NumPy > 2.1 has copy arg return (d.reshape(d.shape[:1]+(-1,)) if flatten else d)
[docs] def unravel(d_raveled: _np.ndarray, cells: _IntSequence, flatten: bool = False) -> _np.ndarray: """ Convert raveled data (1D) to unraveled representation (3D). Parameters ---------- d_raveled : numpy.ndarray, shape (:,...) Raveled data, one-dimensional along leading dimension. cells : sequence of int, len (3) Number of cells. flatten : bool, optional Flatten data, i.e. enforce four-dimensional array. Returns ------- d_unraveled : numpy.ndarray, shape (:,:,:,...) Unraveled data, three-dimensional along leading dimensions. """ d = d_raveled.reshape(tuple(cells)+d_raveled.shape[1:],order='F').copy() # NumPy > 2.1 has copy arg return (d.reshape(d.shape[:3]+(-1,)) if flatten else d)
@_overload def regrid(size: _FloatSequence, F: _np.ndarray, cells: _IntSequence, max_coeff: int = 3, max_candidates: _Union[None, int] = 200, return_size: _Literal[False] = False) -> _np.ndarray: ... @_overload def regrid(size: _FloatSequence, F: _np.ndarray, cells: _IntSequence, max_coeff: int = 3, max_candidates: _Union[None, int] = 200, return_size: _Literal[True] = True) -> RegridTuple: ...
[docs] def regrid(size: _FloatSequence, F: _np.ndarray, cells: _IntSequence, max_coeff: int = 3, max_candidates: _Union[None, int] = 200, return_size: bool = False) -> _Union[_np.ndarray,RegridTuple]: """ Map a deformed grid A back to a rectilinear grid B. The size of grid B is chosen as the smallest periodic box that holds the deformed grid A. Parameters ---------- size : sequence of float, len (3) Physical size of grid A. F : numpy.ndarray, shape (:,:,:,3,3) Deformation gradient field on grid A. cells : sequence of int, len (3) Cell count along x,y,z of grid B. max_coeff : int, optional Largest multiplier in the linear combinations of deformed edges of grid A that are used as basis vectors in search for an aligned orthogonal frame of grid B. Defaults to 3. max_candidates : int, optional Number of shortest candidate vectors to include in search. Defaults to 200. 'None' means all possible candidates (up to max_coeff) are checked. return_size : bool, optional If True, also return the size of grid B. Defaults to False. Returns ------- idx : numpy.ndarray of int, shape (cells) Flat index of closest point on deformed grid A for each point on grid B. size : numpy.ndarray of float, shape (3), optional Physical size of grid B, if return_size is True. """ def shortest_linear_combinations(bases: _np.ndarray, max_coeff: int, max_candidates: _Union[None, int] = None) -> _np.ndarray: """ Generate candidate vectors as linear combinations of basis vectors. Parameters ---------- bases : np.ndarray, shape(d,d) Basis vectors (as rows). max_coeff : int Largest multiplier in linear combinations among basis vectors. max_candidates : int, optional Number of shortest linear combinations to return. Defaults to None, which means all possible linear combinations are returned. Returns ------- combinations : np.ndarray, shape(m,d) Sorted shortest linear combinations of basis vectors. """ coeffs = range(-max_coeff, max_coeff+1) coeffs_arr = _np.stack([n.ravel() for n in _np.meshgrid(*[coeffs]*len(bases),indexing='ij')], axis=1) coeffs_arr = coeffs_arr[_np.any(coeffs_arr != 0, axis=1)] # remove zero tuple vecs = coeffs_arr @ bases # lattice vectors if max_candidates is not None: norms = _np.linalg.norm(vecs, axis=1) idx = _np.argpartition(norms, max_candidates-1)[:max_candidates] # O(N), not full sort vecs = vecs[idx[_np.argsort(norms[idx])]] # sort those by actual norm and use as index return vecs def shortest_aligned(vectors: _np.ndarray) -> dict: """ From a set of 3D vectors, find the shortest vector aligned with each global basis vector. 'Aligned with a basis' means that only that vector component is nonzero (within tolerance). Example: [1.42,0,0] is aligned with the x-axis, whereas [3.2,0,1.1] is not aligned with any axis. Parameters ---------- vectors : array-like, shape (N, 3) List/array of 3D vectors. Returns ------- result : dict Keys: 'x', 'y', 'z'. Values: shortest aligned vector (np.ndarray of shape (3,)) or None if none found. """ arr = _np.asarray(vectors, dtype=float) result = {'x': None, 'y': None, 'z': None} for idx,axis in enumerate(result.keys()): aligned = arr[_np.all(_np.isclose(_np.delete(arr,idx,axis=1),0.0,atol=1e-12),axis=1)] if aligned.size != 0: result[axis] = aligned[_np.argmin(_np.linalg.norm(aligned,axis=1))] return result def repeat_points(points: _np.ndarray, repeats: _np.ndarray, shifts: _np.ndarray) -> _Tuple[_np.ndarray, _np.ndarray]: """ Expand a point cloud by repeating it along x, y, z. Parameters ---------- points : array-like, shape (N,3) Original point cloud. repeats : int, len (3) Number of repeats along (x, y, z). Must be >= 1. shifts : array-like, shape (3,3) Shift vector per repeat along each axis. Returns ------- expanded : numpy.ndarray, shape (N*prod(repeats),3) Expanded point cloud with translated copies. origin_indices : numpy.ndarray, shape (N*prod(repeats),) For each expanded point, the index of the point in the original cloud it came from. """ idx = _np.array(_np.meshgrid(*[_np.arange(r) for r in repeats], indexing='ij')).reshape(3, -1).T deltas = idx @ _np.asarray(shifts) expanded_points = (_np.asarray(points)[:, None, :] + deltas[None, :, :]).reshape(-1, 3) origin_indices = _np.repeat(_np.arange(len(points)), deltas.shape[0]) return (expanded_points,origin_indices) F_avg = _np.average(F,axis=(0,1,2)) bases = (size*F_avg).T shortest = shortest_aligned( shortest_linear_combinations( bases=bases, max_coeff=max_coeff, max_candidates=max_candidates, ) ) if any(v is None for v in shortest.values()): raise ValueError('Cannot find orthogonal basis for average deformation gradient\n' f'{F_avg} acting on box {size}') box = _np.linalg.norm(_np.array([shortest['x'], shortest['y'], shortest['z']]), axis=1) repeats = (_np.ceil(box/size/F_avg.diagonal())).astype(int) c,ids = repeat_points( points=coordinates_point(size,F).reshape((-1,3),order='F'), repeats=repeats, shifts=bases, ) idx = ids[_spatial.cKDTree(c%box,boxsize=box).query(coordinates0_point(cells,box))[1]] return RegridTuple(idx, box) if return_size else idx