Source code for damask._vtk

import os
import multiprocessing as mp
from pathlib import Path
from typing import Optional, Union, Literal, List, Sequence

import numpy as np
from vtkmodules.vtkCommonCore import (
    vtkPoints,
    vtkStringArray,
    vtkLookupTable,
)
from vtkmodules.vtkCommonDataModel import (
    vtkDataSet,
    vtkCellArray,
    vtkImageData,
    vtkRectilinearGrid,
    vtkUnstructuredGrid,
    vtkPolyData,
)
from vtkmodules.vtkIOLegacy import (
    vtkGenericDataObjectReader,
    vtkDataSetWriter,
)
from vtkmodules.vtkIOXML import (
    vtkXMLImageDataReader,
    vtkXMLImageDataWriter,
    vtkXMLRectilinearGridReader,
    vtkXMLRectilinearGridWriter,
    vtkXMLUnstructuredGridReader,
    vtkXMLUnstructuredGridWriter,
    vtkXMLPolyDataReader,
    vtkXMLPolyDataWriter,
)
from vtkmodules.vtkRenderingCore import (
    vtkDataSetMapper,
    vtkActor,
    vtkRenderer,
    vtkRenderWindow,
    vtkRenderWindowInteractor,
)
from vtkmodules.vtkRenderingAnnotation import (
    vtkScalarBarActor,
)
from vtkmodules.util.vtkConstants import (
    VTK_TRIANGLE,
    VTK_QUAD,
    VTK_TETRA,
    VTK_HEXAHEDRON,
)
from vtkmodules.util.numpy_support import (
    numpy_to_vtk,
    numpy_to_vtkIdTypeArray,
    vtk_to_numpy,
)

from ._typehints import FloatSequence, IntSequence
from . import util
from . import Table
from . import Colormap


[docs] class VTK: """ Spatial visualization (and potentially manipulation). High-level interface to VTK. """ def __init__(self, vtk_data: vtkDataSet): """ New spatial visualization. Parameters ---------- vtk_data : subclass of vtkDataSet Description of geometry and topology, optionally with attached data. Valid types are vtkImageData, vtkUnstructuredGrid, vtkPolyData, and vtkRectilinearGrid. """ self.vtk_data = vtk_data def __repr__(self) -> str: """ Return repr(self). Give short, human-readable summary. """ info = [self.vtk_data.__vtkname__] for data in ['Cell Data', 'Point Data']: if data == 'Cell Data': info.append(f'\n# cells: {self.N_cells}') if data == 'Point Data': info.append(f'\n# points: {self.N_points}') if data in self.labels: info += [f' - {l}' for l in self.labels[data]] return util.srepr(info) def __eq__(self, other: object) -> bool: """ Return self==other. Test equality of other. Parameters ---------- other : damask.VTK VTK to check for equality. """ if not isinstance(other, VTK): return NotImplemented return self.as_ASCII() == other.as_ASCII() def copy(self): if isinstance(self.vtk_data,vtkImageData): dup = vtkImageData() elif isinstance(self.vtk_data,vtkUnstructuredGrid): dup = vtkUnstructuredGrid() elif isinstance(self.vtk_data,vtkPolyData): dup = vtkPolyData() elif isinstance(self.vtk_data,vtkRectilinearGrid): dup = vtkRectilinearGrid() else: raise TypeError dup.DeepCopy(self.vtk_data) return VTK(dup) @property def comments(self) -> List[str]: """Return the comments.""" field_data = self.vtk_data.GetFieldData() for a in range(field_data.GetNumberOfArrays()): if field_data.GetArrayName(a) == 'comments': comments = field_data.GetAbstractArray(a) return [comments.GetValue(i) for i in range(comments.GetNumberOfValues())] return [] @comments.setter def comments(self, comments: Sequence[str]): """ Set comments. Parameters ---------- comments : sequence of str Comments. """ s = vtkStringArray() s.SetName('comments') for c in comments: s.InsertNextValue(c) self.vtk_data.GetFieldData().AddArray(s) @property def N_points(self) -> int: """Number of points in vtkdata.""" return self.vtk_data.GetNumberOfPoints() @property def N_cells(self) -> int: """Number of cells in vtkdata.""" return self.vtk_data.GetNumberOfCells() @property def labels(self): """Labels of datasets.""" labels = {} cell_data = self.vtk_data.GetCellData() if c := [cell_data.GetArrayName(a) for a in range(cell_data.GetNumberOfArrays())]: labels['Cell Data'] = c point_data = self.vtk_data.GetPointData() if p := [point_data.GetArrayName(a) for a in range(point_data.GetNumberOfArrays())]: labels['Point Data'] = p return labels
[docs] @staticmethod def from_image_data(cells: IntSequence, size: FloatSequence, origin: FloatSequence = np.zeros(3)) -> 'VTK': """ Create VTK of type vtkImageData. This is the common type for grid solver results. Parameters ---------- cells : sequence of int, len (3) Number of cells along each dimension. size : sequence of float, len (3) Edge length along each dimension. origin : sequence of float, len (3), optional Coordinates of grid origin. Returns ------- new : damask.VTK VTK-based geometry without nodal or cell data. """ vtk_data = vtkImageData() vtk_data.SetDimensions(*(np.array(cells)+1)) vtk_data.SetOrigin(*(np.array(origin))) vtk_data.SetSpacing(*(np.array(size)/np.array(cells))) return VTK(vtk_data)
[docs] @staticmethod def from_unstructured_grid(nodes: np.ndarray, connectivity: np.ndarray, cell_type: str) -> 'VTK': """ Create VTK of type vtkUnstructuredGrid. This is the common type for mesh solver results. Parameters ---------- nodes : numpy.ndarray, shape (:,3) Spatial position of the nodes. connectivity : numpy.ndarray of np.dtype = np.int64 Cell connectivity (0-based), first dimension determines #Cells, second dimension determines #Nodes/Cell. cell_type : str Name of the vtkCell subclass. Tested for TRIANGLE, QUAD, TETRA, and HEXAHEDRON. Returns ------- new : damask.VTK VTK-based geometry without nodal or cell data. """ vtk_nodes = vtkPoints() vtk_nodes.SetData(numpy_to_vtk(np.ascontiguousarray(nodes))) cells = vtkCellArray() cells.SetNumberOfCells(connectivity.shape[0]) T = np.concatenate((np.ones((connectivity.shape[0],1),dtype=np.int64)*connectivity.shape[1], connectivity),axis=1).ravel() cells.SetCells(connectivity.shape[0],numpy_to_vtkIdTypeArray(T,deep=True)) vtk_data = vtkUnstructuredGrid() vtk_data.SetPoints(vtk_nodes) cell_types = {'TRIANGLE':VTK_TRIANGLE, 'QUAD':VTK_QUAD, 'TETRA' :VTK_TETRA, 'HEXAHEDRON':VTK_HEXAHEDRON} vtk_data.SetCells(cell_types[cell_type.split("_",1)[-1].upper()],cells) return VTK(vtk_data)
[docs] @staticmethod def from_poly_data(points: np.ndarray) -> 'VTK': """ Create VTK of type polyData. This is the common type for point-wise data. Parameters ---------- points : numpy.ndarray, shape (:,3) Spatial position of the points. Returns ------- new : damask.VTK VTK-based geometry without nodal or cell data. """ N = points.shape[0] vtk_points = vtkPoints() vtk_points.SetData(numpy_to_vtk(np.ascontiguousarray(points))) vtk_cells = vtkCellArray() vtk_cells.SetNumberOfCells(N) vtk_cells.SetCells(N,numpy_to_vtkIdTypeArray(np.stack((np.ones (N,dtype=np.int64), np.arange(N,dtype=np.int64)),axis=1).ravel(),deep=True)) vtk_data = vtkPolyData() vtk_data.SetPoints(vtk_points) vtk_data.SetVerts(vtk_cells) return VTK(vtk_data)
[docs] @staticmethod def from_rectilinear_grid(grid: FloatSequence) -> 'VTK': """ Create VTK of type vtkRectilinearGrid. Parameters ---------- grid : sequence of sequences of floats, len (3) Grid coordinates along x, y, and z directions. Returns ------- new : damask.VTK VTK-based geometry without nodal or cell data. """ vtk_data = vtkRectilinearGrid() vtk_data.SetDimensions(*map(len,grid)) coord = [numpy_to_vtk(np.array(grid[i]),deep=True) for i in [0,1,2]] [coord[i].SetName(n) for i,n in enumerate(['x','y','z'])] vtk_data.SetXCoordinates(coord[0]) vtk_data.SetYCoordinates(coord[1]) vtk_data.SetZCoordinates(coord[2]) return VTK(vtk_data)
[docs] @staticmethod def load(fname: Union[str, Path], dataset_type: Literal[None, 'ImageData', 'UnstructuredGrid', 'PolyData', 'RectilinearGrid'] = None) -> 'VTK': """ Load from VTK file. Parameters ---------- fname : str or pathlib.Path Filename to read. Valid extensions are .vti, .vtu, .vtp, .vtr, and .vtk. dataset_type : {'ImageData', 'UnstructuredGrid', 'PolyData', 'RectilinearGrid'}, optional Name of the vtkDataSet subclass when opening a .vtk file. Returns ------- loaded : damask.VTK VTK-based geometry from file. """ if not Path(fname).expanduser().is_file(): # vtk has a strange error handling raise FileNotFoundError(f'file "{fname}" not found') if (ext := Path(fname).suffix) == '.vtk' or dataset_type is not None: reader = vtkGenericDataObjectReader() reader.SetFileName(str(Path(fname).expanduser())) if dataset_type is None: raise TypeError('dataset type for *.vtk file not given') elif dataset_type.lower().endswith(('imagedata','image_data')): reader.Update() vtk_data = reader.GetStructuredPointsOutput() elif dataset_type.lower().endswith(('unstructuredgrid','unstructured_grid')): reader.Update() vtk_data = reader.GetUnstructuredGridOutput() elif dataset_type.lower().endswith(('polydata','poly_data')): reader.Update() vtk_data = reader.GetPolyDataOutput() elif dataset_type.lower().endswith(('rectilineargrid','rectilinear_grid')): reader.Update() vtk_data = reader.GetRectilinearGridOutput() else: raise TypeError(f'unknown dataset type "{dataset_type}" for vtk file') else: if ext == '.vti': reader = vtkXMLImageDataReader() elif ext == '.vtu': reader = vtkXMLUnstructuredGridReader() elif ext == '.vtp': reader = vtkXMLPolyDataReader() elif ext == '.vtr': reader = vtkXMLRectilinearGridReader() else: raise TypeError(f'unknown file extension "{ext}"') reader.SetFileName(str(Path(fname).expanduser())) reader.Update() vtk_data = reader.GetOutput() return VTK(vtk_data)
@staticmethod def _write(writer): """Wrapper for parallel writing.""" writer.Write()
[docs] def as_ASCII(self) -> str: """ASCII representation of the VTK data.""" writer = vtkDataSetWriter() writer.SetHeader(f'# {util.execution_stamp("VTK")}') writer.WriteToOutputStringOn() writer.SetInputData(self.vtk_data) writer.Write() return writer.GetOutputString()
[docs] def save(self, fname: Union[str, Path], parallel: bool = True, compress: bool = True): """ Save as VTK file. Parameters ---------- fname : str or pathlib.Path Filename to write. parallel : bool, optional Write data in parallel background process. Defaults to True. compress : bool, optional Compress with zlib algorithm. Defaults to True. """ if isinstance(self.vtk_data,vtkImageData): writer = vtkXMLImageDataWriter() elif isinstance(self.vtk_data,vtkUnstructuredGrid): writer = vtkXMLUnstructuredGridWriter() elif isinstance(self.vtk_data,vtkPolyData): writer = vtkXMLPolyDataWriter() elif isinstance(self.vtk_data,vtkRectilinearGrid): writer = vtkXMLRectilinearGridWriter() default_ext = '.'+writer.GetDefaultFileExtension() ext = Path(fname).suffix writer.SetFileName(str(Path(fname).expanduser())+(default_ext if default_ext != ext else '')) if compress: writer.SetCompressorTypeToZLib() else: writer.SetCompressorTypeToNone() writer.SetByteOrderToLittleEndian() writer.SetDataModeToBinary() writer.SetInputData(self.vtk_data) if parallel: try: mp_writer = mp.Process(target=self._write,args=(writer,)) mp_writer.start() except TypeError: writer.Write() else: writer.Write()
# Check https://blog.kitware.com/ghost-and-blanking-visibility-changes/ for missing data
[docs] def set(self, label: Optional[str] = None, data: Union[None, np.ndarray, np.ma.MaskedArray] = None, info: Optional[str] = None, *, table: Optional['Table'] = None) -> 'VTK': """ Add new or replace existing point or cell data. Data can either be a numpy.array, which requires a corresponding label, or a damask.Table. Parameters ---------- label : str, optional Label of data array. data : numpy.ndarray or numpy.ma.MaskedArray, optional Data to add or replace. First array dimension needs to match either number of cells or number of points. info : str, optional Human-readable information about the data. table: damask.Table, optional Data to add or replace. Each table label is individually considered. Number of rows needs to match either number of cells or number of points. Returns ------- updated : damask.VTK Updated VTK-based geometry. Notes ----- If the number of cells equals the number of points, the data is added to both. """ def _add_array(vtk_data, label: str, data: np.ndarray): N_p,N_c = vtk_data.GetNumberOfPoints(),vtk_data.GetNumberOfCells() if (N_data := data.shape[0]) not in [N_p,N_c]: raise ValueError(f'data count mismatch ({N_data}{N_p} & {N_c})') data_ = data.reshape(N_data,-1) \ .astype(np.single if data.dtype in [np.double,np.longdouble] else data.dtype) if data.dtype.type is np.str_: d = vtkStringArray() for s in np.squeeze(data_): d.InsertNextValue(s) else: d = numpy_to_vtk(data_,deep=True) d.SetName(label) if N_data == N_p: vtk_data.GetPointData().AddArray(d) if N_data == N_c: vtk_data.GetCellData().AddArray(d) if data is None and table is None: raise KeyError('no data given') if data is not None and table is not None: raise KeyError('cannot use both, data and table') dup = self.copy() if isinstance(data,np.ndarray): if label is not None: _add_array(dup.vtk_data, label, np.where(data.mask,data.fill_value,data) if isinstance(data,np.ma.MaskedArray) else data) if info is not None: dup.comments += [f'{label}: {info}'] else: raise ValueError('no label defined for data') elif isinstance(table,Table): for l in table.labels: _add_array(dup.vtk_data,l,table.get(l)) if info is not None: dup.comments += [f'{l}: {info}'] else: raise TypeError return dup
[docs] def get(self, label: str) -> np.ndarray: """ Get either cell or point data. Cell data takes precedence over point data, i.e. this function assumes that labels are unique among cell and point data. Parameters ---------- label : str Data label. Returns ------- data : numpy.ndarray Data stored under the given label. """ cell_data = self.vtk_data.GetCellData() if label in [cell_data.GetArrayName(a) for a in range(cell_data.GetNumberOfArrays())]: try: return vtk_to_numpy(cell_data.GetArray(label)) except AttributeError: vtk_array = cell_data.GetAbstractArray(label) # string array point_data = self.vtk_data.GetPointData() if label in [point_data.GetArrayName(a) for a in range(point_data.GetNumberOfArrays())]: try: return vtk_to_numpy(point_data.GetArray(label)) except AttributeError: vtk_array = point_data.GetAbstractArray(label) # string array try: # string array return np.array([vtk_array.GetValue(i) for i in range(vtk_array.GetNumberOfValues())]).astype(str) except UnboundLocalError: raise KeyError(f'array "{label}" not found')
[docs] def delete(self, label: str) -> 'VTK': """ Delete either cell or point data. Cell data takes precedence over point data, i.e. this function assumes that labels are unique among cell and point data. Parameters ---------- label : str Data label. Returns ------- updated : damask.VTK Updated VTK-based geometry. """ dup = self.copy() cell_data = dup.vtk_data.GetCellData() if label in [cell_data.GetArrayName(a) for a in range(cell_data.GetNumberOfArrays())]: dup.vtk_data.GetCellData().RemoveArray(label) return dup point_data = self.vtk_data.GetPointData() if label in [point_data.GetArrayName(a) for a in range(point_data.GetNumberOfArrays())]: dup.vtk_data.GetPointData().RemoveArray(label) return dup raise KeyError(f'array "{label}" not found')
[docs] def show(self, label: Optional[str] = None, colormap: Union[Colormap, str] = 'cividis'): """ Render. Parameters ---------- label : str, optional Label of the dataset to show. colormap : damask.Colormap or str, optional Colormap for visualization of dataset. Defaults to 'cividis'. Notes ----- The first component is shown when visualizing vector datasets (this includes tensor datasets as they are flattened). """ # See http://compilatrix.com/article/vtk-1 for possible improvements. try: import wx _ = wx.App(False) # noqa width, height = wx.GetDisplaySize() except ImportError: try: import tkinter tk = tkinter.Tk() width = tk.winfo_screenwidth() height = tk.winfo_screenheight() tk.destroy() except Exception: width = 1024 height = 768 lut = vtkLookupTable() colormap_ = Colormap.from_predefined(colormap) if isinstance(colormap,str) else \ colormap lut.SetNumberOfTableValues(len(colormap_.colors)) for i,c in enumerate(colormap_.colors): lut.SetTableValue(i,c if len(c)==4 else np.append(c,1.0)) lut.Build() self.vtk_data.GetCellData().SetActiveScalars(label) mapper = vtkDataSetMapper() mapper.SetInputData(self.vtk_data) mapper.SetLookupTable(lut) mapper.SetScalarRange(self.vtk_data.GetScalarRange()) actor = vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(230/255,150/255,68/255) ren = vtkRenderer() ren.AddActor(actor) if label is None: ren.SetBackground(67/255,128/255,208/255) else: colormap_vtk = vtkScalarBarActor() colormap_vtk.SetLookupTable(lut) colormap_vtk.SetTitle(label) colormap_vtk.SetMaximumWidthInPixels(width//100) ren.AddActor2D(colormap_vtk) ren.SetBackground(0.3,0.3,0.3) window = vtkRenderWindow() window.AddRenderer(ren) window.SetSize(width,height) window.SetWindowName(util.execution_stamp('VTK','show')) iren = vtkRenderWindowInteractor() iren.SetRenderWindow(window) if os.name == 'posix' and 'DISPLAY' not in os.environ: print('Found no rendering device') else: window.Render() iren.Start()