import copy
from typing import Optional, Union, TypeVar
import numpy as np
from ._typehints import FloatSequence, IntSequence, CrystalFamily, BravaisLattice
from . import Rotation
from . import Crystal
from . import util
from . import tensor
MyType = TypeVar('MyType', bound='Orientation')
[docs]
class Orientation(Rotation,Crystal):
"""
Representation of crystallographic orientation as combination of rotation and either crystal family or Bravais lattice.
The crystal family is one of:
- triclinic
- monoclinic
- orthorhombic
- tetragonal
- hexagonal
- cubic
and enables symmetry-related operations such as
"equivalent", "reduced", "disorientation", "IPF_color", or "to_SST".
The Bravais lattice is given in the Pearson notation:
- triclinic
- aP : primitive
- monoclinic
- mP : primitive
- mS : base-centered
- orthorhombic
- oP : primitive
- oS : base-centered
- oI : body-centered
- oF : face-centered
- tetragonal
- tP : primitive
- tI : body-centered
- hexagonal
- hP : primitive
- cubic
- cP : primitive
- cI : body-centered
- cF : face-centered
and inherits the corresponding crystal family.
Specifying a Bravais lattice, compared to just the crystal family,
extends the functionality of Orientation objects to include operations such as
"Schmid", "related", or "to_frame" that require a lattice type and its parameters.
Examples
--------
An array of 3 x 5 random orientations reduced to the fundamental zone of tetragonal symmetry:
>>> import damask
>>> o=damask.Orientation.from_random(shape=(3,5),family='tetragonal').reduced
"""
@util.extend_docstring(adopted_parameters=Crystal.__init__)
def __init__(self,
rotation: Union[FloatSequence, Rotation] = np.array([1.,0.,0.,0.]),
*,
family: Optional[CrystalFamily] = None,
lattice: Optional[BravaisLattice] = None,
a: Optional[float] = None, b: Optional[float] = None, c: Optional[float] = None,
alpha: Optional[float] = None, beta: Optional[float] = None, gamma: Optional[float] = None,
degrees: bool = False):
"""
New orientation.
Parameters
----------
rotation : list, numpy.ndarray, or Rotation, optional
Unit quaternion in positive real hemisphere.
Use .from_quaternion to perform a sanity check.
Defaults to no rotation.
"""
Rotation.__init__(self,rotation)
Crystal.__init__(self,family=family, lattice=lattice,
a=a,b=b,c=c, alpha=alpha,beta=beta,gamma=gamma, degrees=degrees)
def __repr__(self) -> str:
"""
Return repr(self).
Give short, human-readable summary.
"""
return util.srepr([Crystal.__repr__(self),
Rotation.__repr__(self)])
def __copy__(self: MyType,
rotation: Union[None, FloatSequence, Rotation] = None) -> MyType:
"""
Return deepcopy(self).
Create deep copy.
"""
dup = copy.deepcopy(self)
if rotation is not None:
dup.quaternion = Rotation(rotation).quaternion
return dup
copy = __copy__
def __eq__(self,
other: object) -> bool:
"""
Return self==other.
Test equality of other.
Parameters
----------
other : Orientation
Orientation to check for equality.
"""
if not isinstance(other, Orientation):
return NotImplemented
matching_type = self.family == other.family and \
self.lattice == other.lattice and \
self.parameters == other.parameters
return np.logical_and(matching_type,super(self.__class__,self.reduced).__eq__(other.reduced))
def __ne__(self,
other: object) -> bool:
"""
Return self!=other.
Test inequality of other.
Parameters
----------
other : Orientation
Orientation to check for equality.
"""
return np.logical_not(self==other) if isinstance(other, Orientation) else NotImplemented
[docs]
def isclose(self: MyType,
other: MyType,
rtol: float = 1e-5,
atol: float = 1e-8,
equal_nan: bool = True) -> bool:
"""
Report where values are approximately equal to corresponding ones of other Orientation.
Parameters
----------
other : Orientation
Orientation to compare against.
rtol : float, optional
Relative tolerance of equality.
atol : float, optional
Absolute tolerance of equality.
equal_nan : bool, optional
Consider matching NaN values as equal. Defaults to True.
Returns
-------
mask : numpy.ndarray of bool, shape (self.shape)
Mask indicating where corresponding orientations are close.
"""
matching_type = self.family == other.family and \
self.lattice == other.lattice and \
self.parameters == other.parameters
return np.logical_and(matching_type,super(self.__class__,self.reduced).isclose(other.reduced))
[docs]
def allclose(self: MyType,
other: MyType,
rtol: float = 1e-5,
atol: float = 1e-8,
equal_nan: bool = True) -> bool:
"""
Test whether all values are approximately equal to corresponding ones of other Orientation.
Parameters
----------
other : Orientation
Orientation to compare against.
rtol : float, optional
Relative tolerance of equality.
atol : float, optional
Absolute tolerance of equality.
equal_nan : bool, optional
Consider matching NaN values as equal. Defaults to True.
Returns
-------
answer : bool
Whether all values are close between both orientations.
"""
return bool(np.all(self.isclose(other,rtol,atol,equal_nan)))
def __mul__(self: MyType,
other: Union[Rotation, 'Orientation']) -> MyType:
"""
Return self*other.
Compose with other.
Parameters
----------
other : Rotation or Orientation, shape (self.shape)
Object for composition.
Returns
-------
composition : Orientation
Compound rotation self*other, i.e. first other then self rotation.
"""
if not isinstance(other, (Orientation,Rotation)):
raise TypeError('use "O@b", i.e. matmul, to apply Orientation "O" to object "b"')
return self.copy(Rotation(self.quaternion)*Rotation(other.quaternion))
[docs]
@classmethod
@util.extend_docstring(Rotation.from_quaternion,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_quaternion, wrapped=__init__)
def from_quaternion(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_Euler_angles,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_Euler_angles, wrapped=__init__)
def from_Euler_angles(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_axis_angle,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_axis_angle, wrapped=__init__)
def from_axis_angle(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_basis,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_basis, wrapped=__init__)
def from_basis(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_matrix,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_matrix, wrapped=__init__)
def from_matrix(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_parallel,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_parallel, wrapped=__init__)
def from_parallel(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_Rodrigues_vector,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_Rodrigues_vector, wrapped=__init__)
def from_Rodrigues_vector(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_homochoric,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_homochoric, wrapped=__init__)
def from_homochoric(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_cubochoric,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_cubochoric, wrapped=__init__)
def from_cubochoric(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_random,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_random, wrapped=__init__)
def from_random(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_ODF,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_ODF, wrapped=__init__)
def from_ODF(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_spherical_component,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_spherical_component, wrapped=__init__)
def from_spherical_component(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(Rotation.from_fiber_component,
adopted_parameters=Crystal.__init__)
@util.pass_on('rotation', Rotation.from_fiber_component, wrapped=__init__)
def from_fiber_component(cls, **kwargs) -> 'Orientation':
return cls(**kwargs)
[docs]
@classmethod
@util.extend_docstring(adopted_parameters=Crystal.__init__)
def from_directions(cls,
uvw: FloatSequence,
hkl: FloatSequence,
**kwargs) -> 'Orientation':
"""
Initialize orientation object from the crystallographic direction and plane parallel to lab x and z, respectively.
Parameters
----------
uvw : numpy.ndarray, shape (...,3)
Lattice direction aligned with lab frame x-direction.
hkl : numpy.ndarray, shape (...,3)
Lattice plane normal aligned with lab frame z-direction.
Returns
-------
new : damask.Orientation
"""
o = cls(**kwargs,rotation=[1,0,0,0])
x = o.to_frame(uvw=uvw)
z = o.to_frame(hkl=hkl)
om = np.stack([x,np.cross(z,x),z],axis=-2)
return o.copy(Rotation.from_matrix(tensor.transpose(om/np.linalg.norm(om,axis=-1,keepdims=True))))
@property
def equivalent(self: MyType) -> MyType:
"""
Orientations that are symmetrically equivalent.
One dimension (length corresponds to number of symmetrically equivalent orientations)
is added to the left of the Rotation array.
"""
sym_ops = self.symmetry_operations
o = sym_ops.broadcast_to(sym_ops.shape+self.shape,mode='right')
return self.copy(o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'))
@property
def reduced(self: MyType) -> MyType:
"""Select symmetrically equivalent orientation that falls into fundamental zone according to symmetry."""
eq = self.equivalent
ok = eq.in_FZ
ok &= np.cumsum(ok,axis=0) == 1
loc = np.where(ok)
sort = 0 if len(loc) == 1 else np.lexsort(loc[:0:-1])
return eq[ok][sort].reshape(self.shape)
@property
def in_FZ(self) -> Union[np.bool_, np.ndarray]:
"""
Check whether orientation falls into fundamental zone of own symmetry.
Returns
-------
in : numpy.ndarray of bool, shape (self.shape)
Whether Rodrigues-Frank vector falls into fundamental zone.
Notes
-----
Fundamental zones in Rodrigues space are point-symmetric around origin.
References
----------
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
https://doi.org/10.1107/S0108767391006864
"""
rho_abs = np.abs(self.as_Rodrigues_vector(compact=True))*(1.-1.e-9)
with np.errstate(invalid='ignore'):
# using '*'/prod for 'and'
if self.family == 'cubic':
return (np.prod(np.sqrt(2)-1. >= rho_abs,axis=-1) *
(1. >= np.sum(rho_abs,axis=-1))).astype(bool)
if self.family == 'hexagonal':
return (np.prod(1. >= rho_abs,axis=-1) *
(2. >= np.sqrt(3)*rho_abs[...,0] + rho_abs[...,1]) *
(2. >= np.sqrt(3)*rho_abs[...,1] + rho_abs[...,0]) *
(2. >= np.sqrt(3) + rho_abs[...,2])).astype(bool)
if self.family == 'tetragonal':
return (np.prod(1. >= rho_abs[...,:2],axis=-1) *
(np.sqrt(2) >= rho_abs[...,0] + rho_abs[...,1]) *
(np.sqrt(2) >= rho_abs[...,2] + 1.)).astype(bool)
if self.family == 'orthorhombic':
return (np.prod(1. >= rho_abs,axis=-1)).astype(bool)
if self.family == 'monoclinic':
return np.logical_or( 1. >= rho_abs[...,1],
np.isnan(rho_abs[...,1]))
if self.family == 'triclinic':
return np.ones(rho_abs.shape[:-1]).astype(bool)
raise TypeError(f'unknown symmetry "{self.family}"')
@property
def in_disorientation_FZ(self) -> np.ndarray:
"""
Check whether orientation falls into fundamental zone of disorientations.
Returns
-------
in : numpy.ndarray of bool, shape (self.shape)
Whether Rodrigues-Frank vector falls into disorientation FZ.
References
----------
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
https://doi.org/10.1107/S0108767391006864
"""
def larger_or_equal(v,c):
return ((np.isclose(c[0],v[...,0]) | (v[...,0] > c[0])) &
(np.isclose(c[1],v[...,1]) | (v[...,1] > c[1])) &
(np.isclose(c[2],v[...,2]) | (v[...,2] > c[2]))).astype(bool)
rho = self.as_Rodrigues_vector(compact=True)
return larger_or_equal(rho,
[rho[...,1], rho[...,2],0] if self.family == 'cubic'
else [rho[...,1]*np.sqrt(3),0, 0] if self.family == 'hexagonal'
else [rho[...,1], 0, 0] if self.family == 'tetragonal'
else [0, 0, 0] if self.family == 'orthorhombic'
else [-np.inf, 0, 0] if self.family == 'monoclinic'
else [-np.inf, -np.inf, -np.inf]) & self.in_FZ
[docs]
def disorientation(self,
other: 'Orientation',
return_operators: bool = False) -> object:
"""
Calculate disorientation between self and given other orientation.
Parameters
----------
other : Orientation
Orientation to calculate disorientation for.
Shape of other blends with shape of own rotation array.
For example, shapes of (2,3) for own rotations
and (3,2) for other's result in (2,3,2) disorientations.
return_operators : bool, optional
Return index pair of symmetrically equivalent orientations
that result in disorientation axis falling into FZ.
Defaults to False.
Returns
-------
disorientation : Orientation
Disorientation between self and other.
operators : numpy.ndarray of int, shape (...,2), conditional
Index of symmetrically equivalent orientation that rotated vector to the SST.
Notes
-----
Requires same crystal family for both orientations.
Examples
--------
Disorientation between two specific orientations of hexagonal symmetry:
>>> import damask
>>> a = damask.Orientation.from_Euler_angles(phi=[123,32,21],degrees=True,family='hexagonal')
>>> b = damask.Orientation.from_Euler_angles(phi=[104,11,87],degrees=True,family='hexagonal')
>>> a.disorientation(b)
Crystal family: hexagonal
Quaternion [0.976 0.189 0.018 0.103]
Plot a sample from the Mackenzie distribution.
>>> import matplotlib.pyplot as plt
>>> import damask
>>> N = 10000
>>> a = damask.Orientation.from_random(shape=N,family='cubic')
>>> b = damask.Orientation.from_random(shape=N,family='cubic')
>>> n,omega = a.disorientation(b).as_axis_angle(degrees=True,pair=True)
>>> plt.hist(omega,25)
[...]
>>> plt.show()
"""
# For extension to cases with differing symmetry see
# https://doi.org/10.1107/S0021889808016373 and https://doi.org/10.1107/S0108767391006864
if self.family != other.family:
raise NotImplementedError('disorientation between different crystal families')
blend = util.shapeblender( self.shape,other.shape)
s_m = util.shapeshifter( self.shape,blend,mode='right')
s_o = util.shapeshifter(other.shape,blend,mode='left')
s = self.broadcast_to(s_m).equivalent
o = other.broadcast_to(s_o).equivalent
r_ = s[:,np.newaxis,...].misorientation(o[np.newaxis,:,...]) # type: ignore[index]
_r = ~r_
shp = r_.shape[2:]
forward = r_.in_disorientation_FZ
reverse = _r.in_disorientation_FZ
ok = forward | reverse
ok &= (np.cumsum(ok.reshape((-1,*shp)),axis=0) == 1).reshape(ok.shape)
r = np.where(np.any((ok&forward)[...,np.newaxis],axis=(0,1),keepdims=True),
r_.quaternion,
_r.quaternion)
loc = np.where(ok)
sort = 0 if len(loc) == 2 else np.lexsort(loc[:1:-1])
quat = r[ok][sort].reshape((*shp,4))
return (
(self.copy(rotation=quat),
(np.vstack(loc[:2]).T)[sort].reshape((*shp,2)))
if return_operators else
self.copy(rotation=quat)
)
[docs]
def average(self,
weights: Optional[FloatSequence] = None,
return_cloud: bool = False):
"""
Return orientation average over last dimension.
Parameters
----------
weights : numpy.ndarray, shape (self.shape), optional
Relative weights of orientations.
Defaults to equal weights.
return_cloud : bool, optional
Return the specific (symmetrically equivalent) orientations that were averaged.
Defaults to False.
Returns
-------
average : Orientation
Weighted average of original Orientation field.
cloud : Orientations, conditional
Symmetrically equivalent version of each orientation that were actually used in averaging.
References
----------
J.C. Glez and J. Driver, Journal of Applied Crystallography 34:280-288, 2001
https://doi.org/10.1107/S0021889801003077
"""
eq = self.equivalent
m = eq.misorientation(self[...,0].reshape((1,)+self.shape[:-1]+(1,)) # type: ignore
.broadcast_to(eq.shape)).as_axis_angle()[...,3] # type: ignore
r = Rotation(np.squeeze(np.take_along_axis(eq.quaternion,
np.argmin(m,axis=0)[np.newaxis,...,np.newaxis],
axis=0),
axis=0))
return ((self.copy(Rotation(r).average(weights)),self.copy(Rotation(r))) if return_cloud else
self.copy(Rotation(r).average(weights))
)
[docs]
def to_SST(self,
vector: FloatSequence,
proper: bool = False,
return_operators: bool = False) -> np.ndarray:
"""
Rotate lab frame vector to ensure it falls into (improper or proper) standard stereographic triangle of crystal symmetry.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
Lab frame vector to align with an SST crystal frame direction.
Shape of vector blends with shape of own rotation array.
For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.
proper : bool, optional
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
Defaults to False.
return_operators : bool, optional
Return the symmetrically equivalent orientation that rotated vector to SST.
Defaults to False.
Returns
-------
vector_SST : numpy.ndarray, shape (...,3)
Rotated vector falling into SST.
operator : numpy.ndarray of int, shape (...), conditional
Index of symmetrically equivalent orientation that rotated vector to SST.
"""
vector_ = np.array(vector,float)
if vector_.shape[-1] != 3:
raise ValueError('input is not a field of three-dimensional vectors')
blend = util.shapeblender(self.shape,vector_.shape[:-1])
eq = self.broadcast_to(util.shapeshifter(self.shape,blend,mode='right')).equivalent
poles = np.atleast_2d(eq @ np.broadcast_to(vector_,(1,)+blend+(3,)))
ok = self.in_SST(poles,proper=proper)
ok &= np.cumsum(ok,axis=0) == 1
loc = np.where(ok)
sort = 0 if len(loc) == 1 else np.lexsort(loc[:0:-1])
return (
(poles[ok][sort].reshape(blend+(3,)), (np.vstack(loc[:1]).T)[sort].reshape(blend))
if return_operators else
poles[ok][sort].reshape(blend+(3,))
)
[docs]
def in_SST(self,
vector: FloatSequence,
proper: bool = False) -> Union[np.bool_, np.ndarray]:
"""
Check whether given crystal frame vector falls into standard stereographic triangle of own symmetry.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
Vector to check.
proper : bool, optional
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
Defaults to False.
Returns
-------
in : numpy.ndarray, shape (...)
Whether vector falls into SST.
"""
vector_ = np.array(vector,float)
if vector_.shape[-1] != 3:
raise ValueError('input is not a field of three-dimensional vectors')
if self.standard_triangle is None: # direct exit for no symmetry
return np.ones_like(vector_[...,0],bool)
if proper:
components_proper = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['proper'], vector_.shape+(3,)),
vector_), 12)
components_improper = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
vector_), 12)
return np.all(components_proper >= 0.0,axis=-1) \
| np.all(components_improper >= 0.0,axis=-1)
else:
components = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
return np.all(components >= 0.0,axis=-1)
[docs]
def IPF_color(self,
vector: FloatSequence,
in_SST: bool = True,
proper: bool = False) -> np.ndarray:
"""
Map lab frame vector to RGB color within standard stereographic triangle of own symmetry.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
Lab frame vector to colorize.
Shape of vector blends with shape of own rotation array.
For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.
in_SST : bool, optional
Consider symmetrically equivalent orientations such that poles are located in SST.
Defaults to True.
proper : bool, optional
Consider only vectors with z >= 0, hence combine two neighboring SSTs (with mirrored colors).
Defaults to False.
Returns
-------
rgb : numpy.ndarray, shape (...,3)
RGB array of IPF colors.
Examples
--------
Inverse pole figure color of the e_3 lab direction for a
crystal in "Cube" orientation with cubic symmetry:
>>> import damask
>>> o = damask.Orientation(family='cubic')
>>> o.IPF_color([0,0,1])
array([1., 0., 0.])
Sample standard triangle for hexagonal symmetry:
>>> import damask
>>> from matplotlib import pyplot as plt
>>> lab = [0,0,1]
>>> o = damask.Orientation.from_random(shape=500000,family='hexagonal')
>>> coord = damask.util.project_equal_area(o.to_SST(lab))
>>> color = o.IPF_color(lab)
>>> plt.scatter(coord[:,0],coord[:,1],color=color,s=.06)
[...]
>>> plt.axis('scaled')
[...]
>>> plt.show()
"""
if np.array(vector).shape[-1] != 3:
raise ValueError('input is not a field of three-dimensional vectors')
vector_ = self.to_SST(vector,proper) if in_SST else \
self @ np.broadcast_to(vector,self.shape+(3,))
if self.standard_triangle is None: # direct exit for no symmetry
return np.zeros_like(vector_)
if proper:
components_proper = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['proper'], vector_.shape+(3,)),
vector_), 12)
components_improper = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
vector_), 12)
in_SST_ = np.all(components_proper >= 0.0,axis=-1) \
| np.all(components_improper >= 0.0,axis=-1)
components = np.where((in_SST_ & np.all(components_proper >= 0.0,axis=-1))[...,np.newaxis],
components_proper,components_improper)
else:
components = np.around(np.einsum('...ji,...i',
np.broadcast_to(self .standard_triangle['improper'], vector_.shape+(3,)),
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
in_SST_ = np.all(components >= 0.0,axis=-1)
with np.errstate(invalid='ignore',divide='ignore'):
rgb = (components/np.linalg.norm(components,axis=-1,keepdims=True))**(1./3.) # smoothen color ramps
rgb = np.clip(rgb,0.,1.) # clip intensity
rgb /= np.max(rgb,axis=-1,keepdims=True) # normalize to (HS)V = 1
rgb[np.broadcast_to(~in_SST_[...,np.newaxis],rgb.shape)] = 0.0
return rgb
####################################################################################################
# functions that require lattice, not just family
[docs]
def to_lattice(self, *,
direction: Optional[FloatSequence] = None,
plane: Optional[FloatSequence] = None) -> np.ndarray:
"""
Calculate lattice vector corresponding to lab frame direction or plane normal.
Parameters
----------
direction|plane : numpy.ndarray, shape (...,3)
Real space vector along direction or
reciprocal space vector along plane normal.
Shape of vector blends with shape of own rotation array.
For example, a rotation array of shape (3,2) and a vector
array of shape (2,4) result in (3,2,4) outputs.
Returns
-------
Miller : numpy.ndarray, shape (...,3)
Lattice vector of direction or plane.
Use util.scale_to_coprime to convert to (integer) Miller indices.
Examples
--------
>>> import numpy as np
>>> import damask
>>> cubic = damask.Orientation.from_axis_angle(n_omega=[1,0,0,90],degrees=True,lattice='cI')
>>> cubic.to_lattice(direction=[1, 0, 0])
array([1., 0., 0.])
>>> cubic.to_lattice(direction=[0, 1, 0])
array([0., 0., -1.])
>>> cubic.to_lattice(direction=[0, 0, 1])
array([-0., 1., 0.])
>>> tetragonal = damask.Orientation(lattice='tI',c=0.5)
>>> damask.util.scale_to_coprime(tetragonal.to_lattice(direction=[1,1,1]))
array([1, 1, 2])
>>> damask.util.scale_to_coprime(tetragonal.to_lattice(plane=[1,1,1]))
array([2, 2, 1])
"""
if (direction is not None) ^ (plane is None):
raise KeyError('specify either "direction" or "plane"')
return (super().to_lattice(direction=self@np.asarray(direction)) if plane is None else
super().to_lattice(plane=self@np.asarray(plane)))
[docs]
def to_frame(self, *,
uvw: Optional[IntSequence] = None,
hkl: Optional[IntSequence] = None,
uvtw: Optional[IntSequence] = None,
hkil: Optional[IntSequence] = None,
with_symmetry: bool = False,
normalize: bool = True,
) -> np.ndarray:
"""
Calculate lab frame vector along lattice direction [uvw]/[uvtw] or plane normal (hkl)/(hkil).
Parameters
----------
uvw|hkl|uvtw|hkil : numpy.ndarray, shape (...,3) or shape (...,4)
Miller(–Bravais) indices of crystallographic direction or plane normal.
Shape of vector blends with shape of own rotation array.
For example, a rotation array of shape (3,2) and a vector
array of shape (2,4) result in (3,2,4) outputs.
with_symmetry : bool, optional
Calculate all N symmetrically equivalent vectors.
Defaults to False.
normalize : bool, optional
Normalize output vector.
Defaults to True.
Returns
-------
vector : numpy.ndarray, shape (...,3) or (N,...,3)
Lab frame vector (or N vectors if with_symmetry) along
[uvw]/[uvtw] direction or (hkl)/(hkil) plane normal.
"""
v = super().to_frame(uvw=uvw,hkl=hkl,uvtw=uvtw,hkil=hkil)
s_v = v.shape[:-1]
blend = util.shapeblender(self.shape,s_v)
if normalize:
v /= np.linalg.norm(v,axis=-1,keepdims=len(s_v)>0)
if with_symmetry:
sym_ops = self.symmetry_operations
s_v += sym_ops.shape
blend += sym_ops.shape
v = sym_ops.broadcast_to(s_v) @ v[...,np.newaxis,:]
return np.moveaxis(~(self.broadcast_to(blend)) @ np.broadcast_to(v,blend+(3,)),
-2 if with_symmetry else 0,
0)
[docs]
def Schmid(self, *,
N_slip: Optional[IntSequence] = None,
N_twin: Optional[IntSequence] = None) -> np.ndarray:
u"""
Calculate Schmid matrix P = d ⨂ n in the lab frame for selected deformation systems.
Parameters
----------
N_slip|N_twin : '*' or sequence of int
Number of deformation systems per family of the deformation system.
Use '*' to select all.
Returns
-------
P : numpy.ndarray, shape (N,...,3,3)
Schmid matrix for each of the N deformation systems.
Examples
--------
Schmid matrix (in lab frame) of first octahedral slip system of a face-centered
cubic crystal in "Goss" orientation.
>>> import numpy as np
>>> import damask
>>> O = damask.Orientation.from_Euler_angles(phi=[0,45,0],degrees=True,lattice='cF')
>>> O.Schmid(N_slip=[12])[0]
array([[ 0.000, 0.000, 0.000],
[ 0.577, -0.000, 0.816],
[ 0.000, 0.000, 0.000]])
"""
if (N_slip is not None) ^ (N_twin is None):
raise KeyError('specify either "N_slip" or "N_twin"')
kinematics,active = (self.kinematics('slip'),N_slip) if N_twin is None else \
(self.kinematics('twin'),N_twin)
if active == '*': active = [len(a) for a in kinematics['direction']]
if not active:
raise ValueError('Schmid matrix not defined')
d = super().to_frame(uvw=np.vstack([kinematics['direction'][i][:n] for i,n in enumerate(active)]))
p = super().to_frame(hkl=np.vstack([kinematics['plane'][i][:n] for i,n in enumerate(active)]))
P = np.einsum('...i,...j',d/np.linalg.norm(d,axis=1,keepdims=True),
p/np.linalg.norm(p,axis=1,keepdims=True))
shape = P.shape[0:1]+self.shape+(3,3)
return ~self.broadcast_to(shape[:-2]) \
@ np.broadcast_to(P.reshape(util.shapeshifter(P.shape,shape)),shape)