Post-Processing#

The following classes and modules support the analysis of results from DAMASK simulations.

Result#

class damask.Result(fname)[source]#

Add data to and export data from a DADF5 (DAMASK HDF5) file.

A DADF5 file contains DAMASK results. Its group/folder structure reflects the layout in material.yaml.

This class provides a customizable view on the DADF5 file. Upon initialization, all attributes are visible. Derived quantities are added to the file and existing data is exported based on the current view.

Examples

Open ‘my_file.hdf5’, which is assumed to contain deformation gradient ‘F’ and first Piola-Kirchhoff stress ‘P’, add the Mises equivalent of the Cauchy stress, and export it to VTK (file) and numpy.ndarray (memory).

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r
\x1b[2mCreated by DAMASK_grid ...
        on ...
 executing "..."\x1b[0m
...
Attributes:
coordinates0_node

Initial/undeformed nodal coordinates.

coordinates0_point

Initial/undeformed cell center coordinates.

fields
geometry0

Initial/undeformed geometry.

homogenizations
increments
phases
simulation_setup_files

Simulation setup files used to generate the Result object.

times

Methods

add_IPF_color(l[, q])

Add RGB color tuple of inverse pole figure (IPF) color.

add_absolute(x)

Add absolute value.

add_calculation(formula, name[, unit, ...])

Add result of a general formula.

add_curl(f)

Add curl of a field.

add_determinant(T)

Add the determinant of a tensor.

add_deviator(T)

Add the deviatoric part of a tensor.

add_divergence(f)

Add divergence of a field.

add_eigenvalue(T_sym[, eigenvalue])

Add eigenvalues of symmetric tensor.

add_eigenvector(T_sym[, eigenvalue])

Add eigenvector of symmetric tensor.

add_equivalent_Mises(T_sym[, kind])

Add the equivalent Mises stress or strain of a symmetric tensor.

add_gradient(f)

Add gradient of a field.

add_maximum_shear(T_sym)

Add maximum shear components of symmetric tensor.

add_norm(x[, ord])

Add the norm of a vector or tensor.

add_pole([q, uvw, hkl, with_symmetry, normalize])

Add lab frame vector along lattice direction [uvw] or plane normal (hkl).

add_rotation(F)

Add rotational part of a deformation gradient.

add_spherical(T)

Add the spherical (hydrostatic) part of a tensor.

add_strain([F, t, m])

Add strain tensor (Seth-Hill family) of a deformation gradient.

add_stress_Cauchy([P, F])

Add Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.

add_stress_second_Piola_Kirchhoff([P, F])

Add second Piola-Kirchhoff stress calculated from first Piola-Kirchhoff stress and deformation gradient.

add_stretch_tensor([F, t])

Add stretch tensor of a deformation gradient.

copy()

Return deepcopy(self).

export_DADF5(fname[, output, mapping])

Export visible components into a new DADF5 file.

export_DREAM3D([q, target_dir])

Export the visible components to DREAM3D compatible files.

export_VTK([output, mode, constituents, ...])

Export to VTK cell/point data.

export_XDMF([output, target_dir, absolute_path])

Write XDMF file to directly visualize data from DADF5 file.

export_simulation_setup([output, ...])

Export original simulation setup of the Result object.

get([output, flatten, prune])

Collect data per phase/homogenization reflecting the group/folder structure in the DADF5 file.

increments_in_range([start, end])

Get all increments within a given range.

list_data()

Collect information on all active datasets in the file.

place([output, flatten, prune, ...])

Merge data into spatial order that is compatible with the damask.VTK geometry representation.

remove(name)

Remove/delete datasets.

rename(name_src, name_dst)

Rename/move datasets (within the same group/folder).

times_in_range([start, end])

Get times of all increments within a given time range.

view(*[, increments, times, phases, ...])

Set view.

view_all()

Make all attributes visible.

view_less(*[, increments, times, phases, ...])

Remove from view.

view_more(*[, increments, times, phases, ...])

Add to view.

enable_user_function

copy()#

Return deepcopy(self).

Create deep copy.

increments_in_range(start=None, end=None)[source]#

Get all increments within a given range.

Parameters:
startint or str, optional

Start increment. Defaults to first.

endint or str, optional

End increment. Defaults to last.

Returns:
incrementslist of ints

Increment number of all increments within the given bounds.

times_in_range(start=None, end=None)[source]#

Get times of all increments within a given time range.

Parameters:
startfloat, optional

Time of start increment. Defaults to time of first.

endfloat, optional

Time of end increment. Defaults to time of last.

Returns:
timeslist of float

Time of each increment within the given bounds.

view(*, increments=None, times=None, phases=None, homogenizations=None, fields=None, protected=None)[source]#

Set view.

Wildcard matching with ‘?’ and ‘*’ is supported. True is equivalent to ‘*’, False is equivalent to [].

Parameters:
increments: (list of) int, (list of) str, or bool, optional.

Numbers of increments to select.

times: (list of) float, (list of) str, or bool, optional.

Simulation times of increments to select.

phases: (list of) str, or bool, optional.

Names of phases to select.

homogenizations: (list of) str, or bool, optional.

Names of homogenizations to select.

fields: (list of) str, or bool, optional.

Names of fields to select.

protected: bool, optional.

Protection status of existing data.

Returns:
viewdamask.Result

View with only the selected attributes being visible.

Examples

Get a view that shows only results from the initial configuration:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r_first = r.view(increments=0)

Get a view that shows all results between simulation times of 10 to 40:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r_t10to40 = r.view(times=r.times_in_range(10.0,40.0))
view_more(*, increments=None, times=None, phases=None, homogenizations=None, fields=None)[source]#

Add to view.

Wildcard matching with ‘?’ and ‘*’ is supported. True is equivalent to ‘*’, False is equivalent to [].

Parameters:
increments: (list of) int, (list of) str, or bool, optional.

Numbers of increments to select.

times: (list of) float, (list of) str, or bool, optional.

Simulation times of increments to select.

phases: (list of) str, or bool, optional.

Names of phases to select.

homogenizations: (list of) str, or bool, optional.

Names of homogenizations to select.

fields: (list of) str, or bool, optional.

Names of fields to select.

Returns:
modified_viewdamask.Result

View with additional visible attributes.

Examples

Get a view that shows only results from first and last increment:

>>> import damask
>>> r_empty = damask.Result('my_file.hdf5').view(increments=False)
>>> r_first = r_empty.view_more(increments=0)
>>> r_first_and_last = r_first.view_more(increments=-1)
view_less(*, increments=None, times=None, phases=None, homogenizations=None, fields=None)[source]#

Remove from view.

Wildcard matching with ‘?’ and ‘*’ is supported. True is equivalent to ‘*’, False is equivalent to [].

Parameters:
increments: (list of) int, (list of) str, or bool, optional.

Numbers of increments to select.

times: (list of) float, (list of) str, or bool, optional.

Simulation times of increments to select.

phases: (list of) str, or bool, optional.

Names of phases to select.

homogenizations: (list of) str, or bool, optional.

Names of homogenizations to select.

fields: (list of) str, or bool, optional.

Names of fields to select.

Returns:
modified_viewdamask.Result

View with fewer visible attributes.

Examples

Get a view that omits the undeformed configuration:

>>> import damask
>>> r_all = damask.Result('my_file.hdf5')
>>> r_deformed = r_all.view_less(increments=0)
view_all()[source]#

Make all attributes visible.

Returns:
modified_viewdamask.Result

View with all attributes visible.

rename(name_src, name_dst)[source]#

Rename/move datasets (within the same group/folder).

This operation is discouraged because the history of the data becomes untraceable and data integrity is not ensured.

Parameters:
name_srcstr

Name of the datasets to be renamed.

name_dststr

New name of the datasets.

Examples

Rename datasets containing the deformation gradient from ‘F’ to ‘def_grad’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r_unprotected = r.view(protected=False)
\x1b[93m\x1b[1mWarning: Modification of existing datasets allowed!\x1b[0m\x1b[0m
>>> r_unprotected.rename('F','def_grad')
remove(name)[source]#

Remove/delete datasets.

This operation is discouraged because the history of the data becomes untraceable and data integrity is not ensured.

Parameters:
namestr

Name of the datasets to be deleted.

Examples

Delete the deformation gradient ‘F’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r_unprotected = r.view(protected=False)
\x1b[93m\x1b[1mWarning: Modification of existing datasets allowed!\x1b[0m\x1b[0m
>>> r_unprotected.remove('F')
list_data()[source]#

Collect information on all active datasets in the file.

Returns:
datalist of str

Line-formatted information about active datasets.

property simulation_setup_files#

Simulation setup files used to generate the Result object.

property coordinates0_point#

Initial/undeformed cell center coordinates.

property coordinates0_node#

Initial/undeformed nodal coordinates.

property geometry0#

Initial/undeformed geometry.

add_absolute(x)[source]#

Add absolute value.

Parameters:
xstr

Name of scalar, vector, or tensor dataset to take absolute value of.

add_calculation(formula, name, unit='n/a', description=None)[source]#

Add result of a general formula.

Parameters:
formulastr

Formula to calculate resulting dataset. Existing datasets are referenced by ‘#TheirName#’.

namestr

Name of resulting dataset.

unitstr, optional

Physical unit of the result.

descriptionstr, optional

Human-readable description of the result.

Examples

Add total dislocation density, i.e. the sum of mobile dislocation density ‘rho_mob’ and dislocation dipole density ‘rho_dip’ over all slip systems:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_calculation('np.sum(#rho_mob#,axis=1)','rho_mob_total',
...                    '1/m²','total mobile dislocation density')
[...]
>>> r.add_calculation('np.sum(#rho_dip#,axis=1)','rho_dip_total',
...                    '1/m²','total dislocation dipole density')
[...]
>>> r.add_calculation('#rho_dip_total#+#rho_mob_total#','rho_total',
...                    '1/m²','total dislocation density')
[...]

Add Mises equivalent of the Cauchy stress without storage of intermediate results. Define a user function for better readability:

>>> import damask
>>> def equivalent_stress(F,P):
...     sigma = damask.mechanics.stress_Cauchy(F=F,P=P)
...     return damask.mechanics.equivalent_stress_Mises(sigma)
>>> r = damask.Result('my_file.hdf5')
>>> r.enable_user_function(equivalent_stress)
Function equivalent_stress enabled in add_calculation.
>>> r.add_calculation('equivalent_stress(#F#,#P#)','sigma_vM','Pa',
...                   'Mises equivalent of the Cauchy stress')
[...]
add_stress_Cauchy(P='P', F='F')[source]#

Add Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.

Parameters:
Pstr, optional

Name of the dataset containing the first Piola-Kirchhoff stress. Defaults to ‘P’.

Fstr, optional

Name of the dataset containing the deformation gradient. Defaults to ‘F’.

add_determinant(T)[source]#

Add the determinant of a tensor.

Parameters:
Tstr

Name of tensor dataset.

Examples

Add the determinant of plastic deformation gradient ‘F_p’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_determinant('F_p')
[...]
add_deviator(T)[source]#

Add the deviatoric part of a tensor.

Parameters:
Tstr

Name of tensor dataset.

Examples

Add the deviatoric part of Cauchy stress ‘sigma’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_deviator('sigma')
[...]
add_eigenvalue(T_sym, eigenvalue='max')[source]#

Add eigenvalues of symmetric tensor.

Parameters:
T_symstr

Name of symmetric tensor dataset.

eigenvalue{‘max’, ‘mid’, ‘min’}, optional

Eigenvalue. Defaults to ‘max’.

Examples

Add the minimum eigenvalue of Cauchy stress ‘sigma’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_eigenvalue('sigma','min')
[...]
add_eigenvector(T_sym, eigenvalue='max')[source]#

Add eigenvector of symmetric tensor.

Parameters:
T_symstr

Name of symmetric tensor dataset.

eigenvalue{‘max’, ‘mid’, ‘min’}, optional

Eigenvalue to which the eigenvector corresponds. Defaults to ‘max’.

add_IPF_color(l, q='O')[source]#

Add RGB color tuple of inverse pole figure (IPF) color.

Parameters:
lnumpy.array of shape (3) or compatible

Lab frame direction for inverse pole figure.

qstr, optional

Name of the dataset containing the crystallographic orientation as quaternions. Defaults to ‘O’.

Examples

Add the IPF color along [0,1,1] for orientation ‘O’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_IPF_color(l = [0,1,1], q = 'O')
[...]
add_maximum_shear(T_sym)[source]#

Add maximum shear components of symmetric tensor.

Parameters:
T_symstr

Name of symmetric tensor dataset.

add_equivalent_Mises(T_sym, kind=None)[source]#

Add the equivalent Mises stress or strain of a symmetric tensor.

Parameters:
T_symstr

Name of symmetric tensorial stress or strain dataset.

kind{‘stress’, ‘strain’, None}, optional

Kind of the von Mises equivalent. Defaults to None, in which case it is selected based on the unit of the dataset (‘1’ -> strain, ‘Pa’ -> stress).

Examples

Add the Mises equivalent of the Cauchy stress ‘sigma’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_equivalent_Mises('sigma')
[...]

Add the Mises equivalent of the spatial logarithmic strain ‘epsilon_V^0.0(F)’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_equivalent_Mises('epsilon_V^0.0(F)')
[...]
add_norm(x, ord=None)[source]#

Add the norm of a vector or tensor.

Parameters:
xstr

Name of vector or tensor dataset.

ord{non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional

Order of the norm. inf means NumPy’s inf object. For details refer to numpy.linalg.norm.

add_stress_second_Piola_Kirchhoff(P='P', F='F')[source]#

Add second Piola-Kirchhoff stress calculated from first Piola-Kirchhoff stress and deformation gradient.

Parameters:
Pstr, optional

Name of first Piola-Kirchhoff stress dataset. Defaults to ‘P’.

Fstr, optional

Name of deformation gradient dataset. Defaults to ‘F’.

Notes

The definition of the second Piola-Kirchhoff stress \(\vb{S} = \left(\vb{F}^{-1} \vb{P}\right)_\text{sym}\) follows the standard definition in nonlinear continuum mechanics. As such, no intermediate configuration, for instance that reached by \(\vb{F}_\text{p}\), is taken into account.

add_pole(q='O', *, uvw=None, hkl=None, with_symmetry=False, normalize=True)[source]#

Add lab frame vector along lattice direction [uvw] or plane normal (hkl).

Parameters:
qstr, optional

Name of the dataset containing the crystallographic orientation as quaternions. Defaults to ‘O’.

uvw|hklnumpy.ndarray of shape (3) or compatible

Miller indices of crystallographic direction or plane normal.

with_symmetrybool, optional

Calculate all N symmetrically equivalent vectors. Defaults to False.

normalizebool, optional

Normalize output vector. Defaults to True.

add_rotation(F)[source]#

Add rotational part of a deformation gradient.

Parameters:
Fstr

Name of deformation gradient dataset.

Examples

Add the rotational part of deformation gradient ‘F’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_rotation('F')
[...]
add_spherical(T)[source]#

Add the spherical (hydrostatic) part of a tensor.

Parameters:
Tstr

Name of tensor dataset.

Examples

Add the hydrostatic part of the Cauchy stress ‘sigma’:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_spherical('sigma')
[...]
add_strain(F='F', t='V', m=0.0)[source]#

Add strain tensor (Seth-Hill family) of a deformation gradient.

By default, the logarithmic strain based on the left stretch tensor is added.

Parameters:
Fstr, optional

Name of deformation gradient dataset. Defaults to ‘F’.

t{‘V’, ‘U’}, optional

Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor. Defaults to ‘V’.

mfloat, optional

Order of the strain calculation. Defaults to 0.0.

Notes

The presence of rotational parts in the elastic and plastic deformation gradient calls for the use of material/Lagragian strain measures (based on ‘U’) for plastic strains and spatial/Eulerian strain measures (based on ‘V’) for elastic strains when calculating averages.

The strain is defined as:

\[ \begin{align}\begin{aligned}\begin{split}m = 0 \\\\ \vb*{\epsilon}_V^{(0)} = \ln (\vb{V}) \\\\ \vb*{\epsilon}_U^{(0)} = \ln (\vb{U}) \\\\\end{split}\\\begin{split}m \neq 0 \\\\ \vb*{\epsilon}_V^{(m)} = \frac{1}{2m} (\vb{V}^{2m} - \vb{I}) \\\\ \vb*{\epsilon}_U^{(m)} = \frac{1}{2m} (\vb{U}^{2m} - \vb{I})\end{split}\end{aligned}\end{align} \]

References

Examples

Add the Euler-Almansi strain:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_strain(t='V',m=-1.0)
[...]

Add the plastic Biot strain:

>>> import damask
>>> r = damask.Result('my_file.hdf5')
>>> r.add_strain('F_p','U',0.5)
[...]
add_stretch_tensor(F='F', t='V')[source]#

Add stretch tensor of a deformation gradient.

Parameters:
Fstr, optional

Name of deformation gradient dataset. Defaults to ‘F’.

t{‘V’, ‘U’}, optional

Type of the polar decomposition, ‘V’ for left stretch tensor and ‘U’ for right stretch tensor. Defaults to ‘V’.

add_curl(f)[source]#

Add curl of a field.

Parameters:
fstr

Name of vector or tensor field dataset.

Notes

This function is implemented only for structured grids with one constituent and a single phase.

add_divergence(f)[source]#

Add divergence of a field.

Parameters:
fstr

Name of vector or tensor field dataset.

Notes

This function is implemented only for structured grids with one constituent and a single phase.

add_gradient(f)[source]#

Add gradient of a field.

Parameters:
fstr

Name of scalar or vector field dataset.

Notes

This function is implemented only for structured grids with one constituent and a single phase.

get(output='*', flatten=True, prune=True)[source]#

Collect data per phase/homogenization reflecting the group/folder structure in the DADF5 file.

Parameters:
output(list of) str, optional

Names of the datasets to read. Defaults to ‘*’, in which case all datasets are read.

flattenbool, optional

Remove singular levels of the folder hierarchy. This might be beneficial in case of single increment, phase/homogenization, or field. Defaults to True.

prunebool, optional

Remove branches with no data. Defaults to True.

Returns:
datadict of numpy.ndarray

Datasets structured by phase/homogenization and according to selected view.

place(output='*', flatten=True, prune=True, constituents=None, fill_float=nan, fill_int=0)[source]#

Merge data into spatial order that is compatible with the damask.VTK geometry representation.

The returned data structure reflects the group/folder structure in the DADF5 file.

Multi-phase data is fused into a single output. place is equivalent to get if only one phase/homogenization and one constituent is present.

Parameters:
output(list of) str, optional

Names of the datasets to read. Defaults to ‘*’, in which case all visible datasets are placed.

flattenbool, optional

Remove singular levels of the folder hierarchy. This might be beneficial in case of single increment or field. Defaults to True.

prunebool, optional

Remove branches with no data. Defaults to True.

constituents(list of) int, optional

Constituents to consider. Defaults to None, in which case all constituents are considered.

fill_floatfloat, optional

Fill value for non-existent entries of floating point type. Defaults to NaN.

fill_intint, optional

Fill value for non-existent entries of integer type. Defaults to 0.

Returns:
datadict of numpy.ma.MaskedArray

Datasets structured by spatial position and according to selected view.

export_XDMF(output='*', target_dir=None, absolute_path=False)[source]#

Write XDMF file to directly visualize data from DADF5 file.

The XDMF format is only supported for structured grids with single phase and single constituent. For other cases use export_VTK.

Parameters:
output(list of) str, optional

Names of the datasets included in the XDMF file. Defaults to ‘*’, in which case all datasets are considered.

target_dirstr or pathlib.Path, optional

Directory to save XDMF file. Will be created if non-existent.

absolute_pathbool, optional

Store absolute (instead of relative) path to DADF5 file. Defaults to False, i.e. the XDMF file expects the DADF5 file at a stable relative path.

Notes

This function is implemented only for structured grids with one constituent and a single phase.

export_VTK(output='*', mode='cell', constituents=None, target_dir=None, fill_float=nan, fill_int=0, parallel=True)[source]#

Export to VTK cell/point data.

One VTK file per visible increment is created. For point data, the VTK format is PolyData (.vtp). For cell data, the file format is either ImageData (.vti) or UnstructuredGrid (.vtu) for grid-based or mesh-based simulations, respectively.

Parameters:
output(list of) str, optional

Names of the datasets to export to the VTK file. Defaults to ‘*’, in which case all visible datasets are exported.

mode{‘cell’, ‘point’}, optional

Export in cell format or point format. Defaults to ‘cell’.

constituents(list of) int, optional

Constituents to consider. Defaults to None, in which case all constituents are considered.

target_dirstr or pathlib.Path, optional

Directory to save VTK files. Will be created if non-existent.

fill_floatfloat, optional

Fill value for non-existent entries of floating point type. Defaults to NaN.

fill_intint, optional

Fill value for non-existent entries of integer type. Defaults to 0.

parallelbool, optional

Write VTK files in parallel in a separate background process. Defaults to True.

export_DREAM3D(q='O', target_dir=None)[source]#

Export the visible components to DREAM3D compatible files.

One DREAM3D file per visible increment is created. The geometry is based on the undeformed configuration.

Parameters:
qstr, optional

Name of the dataset containing the crystallographic orientation as quaternions. Defaults to ‘O’.

target_dirstr or pathlib.Path, optional

Directory to save DREAM3D files. Will be created if non-existent.

Notes

This function is implemented only for structured grids with one constituent.

export_DADF5(fname, output='*', mapping=None)[source]#

Export visible components into a new DADF5 file.

A DADF5 (DAMASK HDF5) file contains DAMASK results. Its group/folder structure reflects the layout in material.yaml.

Parameters:
fnamestr or pathlib.Path

Name of the DADF5 file to be created.

output(list of) str, optional

Names of the datasets to export. Defaults to ‘*’, in which case all visible datasets are exported.

mappingnumpy.ndarray of int, shape (:,:,:), optional

Indices for regridding. Only applicable for grid solver results.

export_simulation_setup(output='*', target_dir=None, overwrite=False)[source]#

Export original simulation setup of the Result object.

Parameters:
output(list of) str, optional

Names of the datasets to export to the file. Defaults to ‘*’, in which case all setup files are exported.

target_dirstr or pathlib.Path, optional

Directory to save setup files. Will be created if non-existent.

overwritebool, optional

Overwrite any existing setup files. Defaults to False.


Colormap#

class damask.Colormap(colors, name)[source]#

Enhance matplotlib colormap functionality for use within DAMASK.

Colors are internally stored as R(ed) G(green) B(lue) values. A colormap can be used in matplotlib, seaborn, etc., or can be exported to file for external use.

References

K. Moreland, Proceedings of the 5th International Symposium on Advances in Visual Computing, 2009 https://doi.org/10.1007/978-3-642-10520-3_9

P. Eisenlohr et al., International Journal of Plasticity 46:37–53, 2013 https://doi.org/10.1016/j.ijplas.2012.09.012

Matplotlib colormaps overview https://matplotlib.org/stable/tutorials/colors/colormaps.html

Methods

__call__(X[, alpha, bytes])

Parameters:

at(fraction)

Interpolate color at fraction.

copy()

Return a copy of the colormap.

from_predefined(name[, N])

Select from a set of predefined colormaps.

from_range(low, high[, name, N, model])

Create a perceptually uniform colormap between given (inclusive) bounds.

get_bad()

Get the color for masked values.

get_over()

Get the color for high out-of-range values.

get_under()

Get the color for low out-of-range values.

is_gray()

Return whether the colormap is grayscale.

resampled(lutsize)

Return a new colormap with lutsize entries.

reversed([name])

Reverse.

save_ASCII([fname])

Save as ASCII file.

save_GOM([fname])

Save as ASCII file for use in GOM Aramis.

save_gmsh([fname])

Save as ASCII file for use in gmsh.

save_paraview([fname])

Save as JSON file for use in Paraview.

set_bad([color, alpha])

Set the color for masked values.

set_extremes(*[, bad, under, over])

Set the colors for masked (bad) values and, when norm.clip = False, low (under) and high (over) out-of-range values.

set_over([color, alpha])

Set the color for high out-of-range values.

set_under([color, alpha])

Set the color for low out-of-range values.

shade(field[, bounds, gap])

Generate PIL image of 2D field using colormap.

with_extremes(*[, bad, under, over])

Return a copy of the colormap, for which the colors for masked (bad) values and, when norm.clip = False, low (under) and high (over) out-of-range values, have been set accordingly.

static from_range(low, high, name='DAMASK colormap', N=256, model='rgb')[source]#

Create a perceptually uniform colormap between given (inclusive) bounds.

Parameters:
lowsequence of float, len (3)

Color definition for minimum value.

highsequence of float, len (3)

Color definition for maximum value.

namestr, optional

Name of the colormap. Defaults to ‘DAMASK colormap’.

Nint, optional

Number of color quantization levels. Defaults to 256.

model{‘rgb’, ‘hsv’, ‘hsl’, ‘xyz’, ‘lab’, ‘msh’}

Color model used for input color definitions. Defaults to ‘rgb’. The available color models are: - ‘rgb’: Red Green Blue. - ‘hsv’: Hue Saturation Value. - ‘hsl’: Hue Saturation Luminance. - ‘xyz’: CIE Xyz. - ‘lab’: CIE Lab. - ‘msh’: Msh (for perceptually uniform interpolation).

Returns:
newdamask.Colormap

Colormap spanning given bounds.

Examples

>>> import damask
>>> damask.Colormap.from_range((0,0,1),(0,0,0),'blue_to_black')
Colormap: blue_to_black
static from_predefined(name, N=256)[source]#

Select from a set of predefined colormaps.

Predefined colormaps (Colormap.predefined) include native matplotlib colormaps and common DAMASK colormaps.

Parameters:
namestr

Name of the colormap.

Nint, optional

Number of color quantization levels. Defaults to 256. This parameter is not used for matplotlib colormaps that are of type ListedColormap.

Returns:
newdamask.Colormap

Predefined colormap.

Examples

>>> import damask
>>> damask.Colormap.from_predefined('strain')
Colormap: strain
at(fraction)[source]#

Interpolate color at fraction.

Parameters:
fraction(sequence of) float

Fractional coordinate(s) to evaluate Colormap at.

Returns:
colornumpy.ndarray, shape(…,4)

RGBA values of interpolated color(s).

Examples

>>> import damask
>>> cmap = damask.Colormap.from_predefined('gray')
>>> cmap.at(0.5)
array([0.5, 0.5, 0.5, 1. ])
>>> 'rgb({},{},{})'.format(*cmap.at(0.5))
'rgb(0.5,0.5,0.5)'
shade(field, bounds=None, gap=None)[source]#

Generate PIL image of 2D field using colormap.

Parameters:
fieldnumpy.ndarray, shape (:,:)

Data to be shaded.

boundssequence of float, len (2), optional

Value range (left,right) spanned by colormap.

gapfield.dtype, optional

Transparent value. NaN will always be rendered transparent. Defaults to None.

Returns:
PIL.Image

RGBA image of shaded data.

reversed(name=None)[source]#

Reverse.

Parameters:
namestr, optional

Name of the reversed colormap. Defaults to parent colormap name + ‘_r’.

Returns:
damask.Colormap

Reversed colormap.

Examples

>>> import damask
>>> damask.Colormap.from_predefined('stress').reversed()
Colormap: stress_r
save_paraview(fname=None)[source]#

Save as JSON file for use in Paraview.

Parameters:
fnamefile, str, or pathlib.Path, optional

File to store results. Defaults to colormap name + ‘.json’.

save_ASCII(fname=None)[source]#

Save as ASCII file.

Parameters:
fnamefile, str, or pathlib.Path, optional

File to store results. Defaults to colormap name + ‘.txt’.

save_GOM(fname=None)[source]#

Save as ASCII file for use in GOM Aramis.

Parameters:
fnamefile, str, or pathlib.Path, optional

File to store results. Defaults to colormap name + ‘.legend’.

save_gmsh(fname=None)[source]#

Save as ASCII file for use in gmsh.

Parameters:
fnamefile, str, or pathlib.Path, optional

File to store results. Defaults to colormap name + ‘.msh’.

copy()[source]#

Return a copy of the colormap.

get_bad()[source]#

Get the color for masked values.

get_over()[source]#

Get the color for high out-of-range values.

get_under()[source]#

Get the color for low out-of-range values.

is_gray()[source]#

Return whether the colormap is grayscale.

resampled(lutsize)[source]#

Return a new colormap with lutsize entries.

set_bad(color='k', alpha=None)[source]#

Set the color for masked values.

set_extremes(*, bad=None, under=None, over=None)[source]#

Set the colors for masked (bad) values and, when norm.clip = False, low (under) and high (over) out-of-range values.

set_over(color='k', alpha=None)[source]#

Set the color for high out-of-range values.

set_under(color='k', alpha=None)[source]#

Set the color for low out-of-range values.

with_extremes(*, bad=None, under=None, over=None)[source]#

Return a copy of the colormap, for which the colors for masked (bad) values and, when norm.clip = False, low (under) and high (over) out-of-range values, have been set accordingly.

colorbar_extend#

When this colormap exists on a scalar mappable and colorbar_extend is not False, colorbar creation will pick up colorbar_extend as the default value for the extend keyword in the matplotlib.colorbar.Colorbar constructor.


Orientation#

class damask.Orientation(rotation=array([1., 0., 0., 0.]), *, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Representation of crystallographic orientation as combination of rotation and either crystal family or Bravais lattice.

The crystal family is one of:

  • triclinic

  • monoclinic

  • orthorhombic

  • tetragonal

  • hexagonal

  • cubic

and enables symmetry-related operations such as “equivalent”, “reduced”, “disorientation”, “IPF_color”, or “to_SST”.

The Bravais lattice is given in the Pearson notation:

  • triclinic
    • aP : primitive

  • monoclinic
    • mP : primitive

    • mS : base-centered

  • orthorhombic
    • oP : primitive

    • oS : base-centered

    • oI : body-centered

    • oF : face-centered

  • tetragonal
    • tP : primitive

    • tI : body-centered

  • hexagonal
    • hP : primitive

  • cubic
    • cP : primitive

    • cI : body-centered

    • cF : face-centered

and inherits the corresponding crystal family. Specifying a Bravais lattice, compared to just the crystal family, extends the functionality of Orientation objects to include operations such as “Schmid”, “related”, or “to_frame” that require a lattice type and its parameters.

Examples

An array of 3 x 5 random orientations reduced to the fundamental zone of tetragonal symmetry:

>>> import damask
>>> o=damask.Orientation.from_random(shape=(3,5),family='tetragonal').reduced
Attributes:
basis_real

Return orthogonal real space crystal basis.

basis_reciprocal

Return reciprocal (dual) crystal basis.

equivalent

Orientations that are symmetrically equivalent.

immutable

Return immutable lattice parameters.

in_FZ

Check whether orientation falls into fundamental zone of own symmetry.

in_disorientation_FZ

Check whether orientation falls into fundamental zone of disorientations.

lattice_points

Return lattice points.

orientation_relationships

Return labels of orientation relationships.

parameters

Return lattice parameters a, b, c, alpha, beta, gamma.

quaternion
ratio

Return axes ratios of own lattice.

reduced

Select symmetrically equivalent orientation that falls into fundamental zone according to symmetry.

shape
size
standard_triangle

Corners of the standard triangle.

symmetry_operations

Return symmetry operations.

Methods

IPF_color(vector[, in_SST, proper])

Map lab frame vector to RGB color within standard stereographic triangle of own symmetry.

Schmid(*[, N_slip, N_twin])

Calculate Schmid matrix P = d ⨂ n in the lab frame for selected deformation systems.

allclose(other[, rtol, atol, equal_nan])

Test whether all values are approximately equal to corresponding ones of other Orientation.

append(other)

Extend array along first dimension with other array(s).

apply(other)

Return self@other.

as_Euler_angles([degrees])

Represent as Bunge Euler angles.

as_Rodrigues_vector([compact])

Represent as Rodrigues–Frank vector with separate axis and angle argument.

as_axis_angle([degrees, pair])

Represent as axis–angle pair.

as_cubochoric()

Represent as cubochoric vector.

as_homochoric()

Represent as homochoric vector.

as_matrix()

Represent as rotation matrix.

as_quaternion()

Represent as unit quaternion.

average([weights, return_cloud])

Return orientation average over last dimension.

broadcast_to(shape[, mode])

Broadcast array.

copy([rotation])

Return deepcopy(self).

disorientation(other[, return_operators])

Calculate disorientation between self and given other orientation.

flatten([order])

Flatten array.

from_Euler_angles(*, phi[, degrees, family, ...])

Initialize from Bunge Euler angles.

from_ODF(*, weights, phi[, shape, degrees, ...])

Initialize with samples from a binned orientation distribution function (ODF).

from_Rodrigues_vector(*, rho[, normalize, ...])

Initialize from Rodrigues–Frank vector (with angle separated from axis).

from_axis_angle(*, n_omega[, degrees, ...])

Initialize from axis–angle pair.

from_basis(*, basis[, orthonormal, ...])

Initialize from basis vector triplet.

from_cubochoric(*, x[, P, family, lattice, ...])

Initialize from cubochoric vector.

from_directions(uvw, hkl, **kwargs)

Initialize orientation object from the crystallographic direction and plane parallel to lab x and z, respectively.

from_fiber_component(*, crystal, sample[, ...])

Initialize with samples from a Gaussian distribution around a given direction.

from_homochoric(*, h[, P, family, lattice, ...])

Initialize from homochoric vector.

from_matrix(*, R[, normalize, family, ...])

Initialize from rotation matrix.

from_parallel(*, a, b[, family, lattice, c, ...])

Initialize from pairs of two orthogonal basis vectors.

from_quaternion(*, q[, accept_homomorph, ...])

Initialize from quaternion.

from_random(*[, shape, rng_seed, family, ...])

Initialize with samples from a uniform distribution.

from_spherical_component(*, center, sigma[, ...])

Initialize with samples from a Gaussian distribution around a given center.

in_SST(vector[, proper])

Check whether given crystal frame vector falls into standard stereographic triangle of own symmetry.

isclose(other[, rtol, atol, equal_nan])

Report where values are approximately equal to corresponding ones of other Orientation.

kinematics(mode)

Return crystal kinematics systems.

misorientation(other)

Calculate misorientation to other Rotation.

related(model[, target])

All orientations related to self by given relationship model.

relation_operations(model[, target])

Crystallographic orientation relationships for phase transformations.

reshape(newshape[, order])

Reshape array.

to_SST(vector[, proper, return_operators])

Rotate lab frame vector to ensure it falls into (improper or proper) standard stereographic triangle of crystal symmetry.

to_frame(*[, uvw, hkl, uvtw, hkil, ...])

Calculate lab frame vector along lattice direction [uvw]/[uvtw] or plane normal (hkl)/(hkil).

to_lattice(*[, direction, plane])

Calculate lattice vector corresponding to lab frame direction or plane normal.

copy(rotation=None)#

Return deepcopy(self).

Create deep copy.

isclose(other, rtol=1e-05, atol=1e-08, equal_nan=True)[source]#

Report where values are approximately equal to corresponding ones of other Orientation.

Parameters:
otherOrientation

Orientation to compare against.

rtolfloat, optional

Relative tolerance of equality.

atolfloat, optional

Absolute tolerance of equality.

equal_nanbool, optional

Consider matching NaN values as equal. Defaults to True.

Returns:
masknumpy.ndarray of bool, shape (self.shape)

Mask indicating where corresponding orientations are close.

allclose(other, rtol=1e-05, atol=1e-08, equal_nan=True)[source]#

Test whether all values are approximately equal to corresponding ones of other Orientation.

Parameters:
otherOrientation

Orientation to compare against.

rtolfloat, optional

Relative tolerance of equality.

atolfloat, optional

Absolute tolerance of equality.

equal_nanbool, optional

Consider matching NaN values as equal. Defaults to True.

Returns:
answerbool

Whether all values are close between both orientations.

classmethod from_quaternion(*, q, accept_homomorph=False, normalize=False, P=-1, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize from quaternion.

Parameters:
qnumpy.ndarray, shape (…,4)

Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1 and q_0 ≥ 0.

accept_homomorphbool, optional

Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere). Defaults to False.

normalize: bool, optional

Allow ǀqǀ ≠ 1. Defaults to False.

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation

Examples

>>> import damask
>>> damask.Rotation.from_quaternion([[1,0,0,0],[0,1,0,0]])
Quaternions of shape (2,)
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]]
classmethod from_Euler_angles(*, phi, degrees=False, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None)[source]#

Initialize from Bunge Euler angles.

Parameters:
phinumpy.ndarray, shape (…,3)

Euler angles (φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]) or (φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True.

degreesbool, optional

Euler angles are given in degrees. Defaults to False.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

Returns:
newdamask.Orientation

Notes

Bunge Euler angles correspond to a rotation axis sequence of z–x’–z’’.

Examples

>>> import damask
>>> damask.Rotation.from_Euler_angles([180,0,0],degrees=True)
Quaternion [0. 0. 0. 1.]
classmethod from_axis_angle(*, n_omega, degrees=False, normalize=False, P=-1, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None)[source]#

Initialize from axis–angle pair.

Parameters:
n_omeganumpy.ndarray, shape (…,4)

Axis and angle (n_1, n_2, n_3, ω) with ǀnǀ = 1 and ω ∈ [0,π] or ω ∈ [0,180] if degrees == True.

degreesbool, optional

Angle ω is given in degrees. Defaults to False.

normalize: bool, optional

Allow ǀnǀ ≠ 1. Defaults to False.

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

Returns:
newdamask.Orientation

Examples

>>> import damask
>>> damask.Rotation.from_axis_angle([[0,0,1,90],[1,0,0,90]],degrees=True)
Quaternions of shape (2,)
[[0.707 0.    0.    0.707]
 [0.707 0.707 0.    0.   ]]
classmethod from_basis(*, basis, orthonormal=True, reciprocal=False, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize from basis vector triplet.

Parameters:
basisnumpy.ndarray, shape (…,3,3)

Three three-dimensional basis vectors.

orthonormalbool, optional

Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.

reciprocalbool, optional

Basis vectors are given in reciprocal (instead of real) space. Defaults to False.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation
classmethod from_matrix(*, R, normalize=False, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize from rotation matrix.

Parameters:
Rnumpy.ndarray, shape (…,3,3)

Rotation matrix with det(R) = 1 and R.T ∙ R = I.

normalizebool, optional

Rescales rotation matrix to unit determinant. Defaults to False.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation

Examples

>>> import damask
>>> damask.Rotation.from_matrix([[1,0,0],[0,0,-1],[0,1,0]])
Quaternion [ 0.707 -0.707 0.  0. ]
classmethod from_parallel(*, a, b, family=None, lattice=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize from pairs of two orthogonal basis vectors.

Parameters:
anumpy.ndarray, shape (…,2,3)

Two three-dimensional vectors of first orthogonal basis.

bnumpy.ndarray, shape (…,2,3)

Corresponding three-dimensional vectors of second basis.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

cfloat, optional

Length of lattice parameter ‘c’.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation

Examples

>>> import damask
>>> damask.Rotation.from_parallel([[2,0,0],[0,1,0]],[[1,0,0],[0,2,0]])
Quaternion [1. 0. 0. 0.]
classmethod from_Rodrigues_vector(*, rho, normalize=False, P=-1, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize from Rodrigues–Frank vector (with angle separated from axis).

Parameters:
rhonumpy.ndarray, shape (…,4)

Rodrigues–Frank vector (n_1, n_2, n_3, tan(ω/2)) with ǀnǀ = 1 and ω ∈ [0,π].

normalizebool, optional

Allow ǀnǀ ≠ 1. Defaults to False.

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation

Examples

>>> import damask
>>> damask.Rotation.from_Rodrigues_vector([0,0,1,1])
Quaternion [0.707 0.    0.    0.707]
classmethod from_homochoric(*, h, P=-1, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize from homochoric vector.

Parameters:
hnumpy.ndarray, shape (…,3)

Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation
classmethod from_cubochoric(*, x, P=-1, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize from cubochoric vector.

Parameters:
xnumpy.ndarray, shape (…,3)

Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation
classmethod from_random(*, shape=None, rng_seed=None, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, degrees=False)[source]#

Initialize with samples from a uniform distribution.

Parameters:
shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation
classmethod from_ODF(*, weights, phi, shape=None, degrees=False, fractions=True, rng_seed=None, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None)[source]#

Initialize with samples from a binned orientation distribution function (ODF).

Parameters:
weightsnumpy.ndarray, shape (n)

Texture intensity values (probability density or volume fraction) at Euler space grid points.

phinumpy.ndarray, shape (n,3)

Grid coordinates in Euler space at which weights are defined.

shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

degreesbool, optional

Euler space grid coordinates are in degrees. Defaults to True.

fractionsbool, optional

ODF values correspond to volume fractions, not probability densities. Defaults to True.

rng_seed: {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

Returns:
newdamask.Orientation

Notes

Due to the distortion of Euler space in the vicinity of ϕ = 0, probability densities, p, defined on grid points with ϕ = 0 will never result in reconstructed orientations as their dV/V = p dγ = p × 0. Hence, it is recommended to transform any such dataset to a cell-centered version, which avoids grid points at ϕ = 0.

References

P. Eisenlohr and F. Roters, Computational Materials Science 42(4):670-678, 2008 https://doi.org/10.1016/j.commatsci.2007.09.015

classmethod from_spherical_component(*, center, sigma, shape=None, degrees=False, rng_seed=None, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None)[source]#

Initialize with samples from a Gaussian distribution around a given center.

Parameters:
centerRotation or Orientation

Central rotation.

sigmafloat

Standard deviation of (Gaussian) misorientation distribution.

shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

degreesbool, optional

sigma is given in degrees. Defaults to False.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

Examples

Create a brass texture consisting of 200 orientations:

>>> import damask
>>> center = damask.Rotation.from_Euler_angles([35.,45.,0.],degrees=True)
>>> brass = damask.Rotation.from_spherical_component(center=center,sigma=3.,shape=200,degrees=True)

Create a Goss texture consisting of 100 orientations:

>>> import damask
>>> center = damask.Rotation.from_Euler_angles([0.,45.,0.],degrees=True)
>>> goss = damask.Rotation.from_spherical_component(center=center,sigma=3.,shape=100,degrees=True)
classmethod from_fiber_component(*, crystal, sample, sigma=0.0, shape=None, degrees=False, rng_seed=None, family=None, lattice=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None)[source]#

Initialize with samples from a Gaussian distribution around a given direction.

Parameters:
crystalnumpy.ndarray, shape (2)

Polar coordinates (polar angle θ from [0 0 1], azimuthal angle φ from [1 0 0]) of fiber direction in crystal frame.

samplenumpy.ndarray, shape (2)

Polar coordinates (polar angle θ from z, azimuthal angle φ from x) of fiber direction in sample frame.

sigmafloat, optional

Standard deviation of (Gaussian) misorientation distribution. Defaults to 0.

shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

degreesbool, optional

sigma and polar coordinates are given in degrees. Defaults to False.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

Returns:
newdamask.Orientation

Notes

The crystal direction for (θ=0,φ=0) is [0 0 1], the sample direction for (θ=0,φ=0) is z.

Polar coordinates follow the ISO 80000-2:2019 convention typically used in physics. See https://en.wikipedia.org/wiki/Spherical_coordinate_system.

Ranges 0≤θ≤π and 0≤φ≤2π give a unique set of coordinates.

Examples

Create an ideal α-fiber texture (<1 1 0> ǀǀ RD=x) consisting of 200 orientations:

>>> import damask
>>> import numpy as np
>>> alpha = damask.Rotation.from_fiber_component([np.pi/4.,0.],[np.pi/2.,0.],shape=200)

Create an ideal γ-fiber texture (<1 1 1> ǀǀ ND=z) consisting of 100 orientations:

>>> import damask
>>> gamma = damask.Rotation.from_fiber_component([54.7,45.],[0.,0.],shape=100,degrees=True)
classmethod from_directions(uvw, hkl, **kwargs)[source]#

Initialize orientation object from the crystallographic direction and plane parallel to lab x and z, respectively.

Parameters:
uvwnumpy.ndarray, shape (…,3)

Lattice direction aligned with lab frame x-direction.

hklnumpy.ndarray, shape (…,3)

Lattice plane normal aligned with lab frame z-direction.

family{‘triclinic’, ‘monoclinic’, ‘orthorhombic’, ‘tetragonal’, ‘hexagonal’, ‘cubic’}, optional.

Name of the crystal family. Will be inferred if ‘lattice’ is given.

lattice{‘aP’, ‘mP’, ‘mS’, ‘oP’, ‘oS’, ‘oI’, ‘oF’, ‘tP’, ‘tI’, ‘hP’, ‘cP’, ‘cI’, ‘cF’}, optional.

Name of the Bravais lattice in Pearson notation.

afloat, optional

Length of lattice parameter ‘a’.

bfloat, optional

Length of lattice parameter ‘b’.

cfloat, optional

Length of lattice parameter ‘c’.

alphafloat, optional

Angle between b and c lattice basis.

betafloat, optional

Angle between c and a lattice basis.

gammafloat, optional

Angle between a and b lattice basis.

degreesbool, optional

Angles are given in degrees. Defaults to False.

Returns:
newdamask.Orientation
property equivalent#

Orientations that are symmetrically equivalent.

One dimension (length corresponds to number of symmetrically equivalent orientations) is added to the left of the Rotation array.

property reduced#

Select symmetrically equivalent orientation that falls into fundamental zone according to symmetry.

property in_FZ#

Check whether orientation falls into fundamental zone of own symmetry.

Returns:
innumpy.ndarray of bool, shape (self.shape)

Whether Rodrigues-Frank vector falls into fundamental zone.

Notes

Fundamental zones in Rodrigues space are point-symmetric around origin.

References

A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991 https://doi.org/10.1107/S0108767391006864

property in_disorientation_FZ#

Check whether orientation falls into fundamental zone of disorientations.

Returns:
innumpy.ndarray of bool, shape (self.shape)

Whether Rodrigues-Frank vector falls into disorientation FZ.

References

A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991 https://doi.org/10.1107/S0108767391006864

disorientation(other, return_operators=False)[source]#

Calculate disorientation between self and given other orientation.

Parameters:
otherOrientation

Orientation to calculate disorientation for. Shape of other blends with shape of own rotation array. For example, shapes of (2,3) for own rotations and (3,2) for other’s result in (2,3,2) disorientations.

return_operatorsbool, optional

Return index pair of symmetrically equivalent orientations that result in disorientation axis falling into FZ. Defaults to False.

Returns:
disorientationOrientation

Disorientation between self and other.

operatorsnumpy.ndarray of int, shape (…,2), conditional

Index of symmetrically equivalent orientation that rotated vector to the SST.

Notes

Requires same crystal family for both orientations.

Examples

Disorientation between two specific orientations of hexagonal symmetry:

>>> import damask
>>> a = damask.Orientation.from_Euler_angles(phi=[123,32,21],degrees=True,family='hexagonal')
>>> b = damask.Orientation.from_Euler_angles(phi=[104,11,87],degrees=True,family='hexagonal')
>>> a.disorientation(b)
Crystal family: hexagonal
Quaternion [0.976   0.189 0.018 0.103]

Plot a sample from the Mackenzie distribution.

>>> import matplotlib.pyplot as plt
>>> import damask
>>> N = 10000
>>> a = damask.Orientation.from_random(shape=N,family='cubic')
>>> b = damask.Orientation.from_random(shape=N,family='cubic')
>>> n,omega = a.disorientation(b).as_axis_angle(degrees=True,pair=True)
>>> plt.hist(omega,25)
[...]
>>> plt.show()
average(weights=None, return_cloud=False)[source]#

Return orientation average over last dimension.

Parameters:
weightsnumpy.ndarray, shape (self.shape), optional

Relative weights of orientations. Defaults to equal weights.

return_cloudbool, optional

Return the specific (symmetrically equivalent) orientations that were averaged. Defaults to False.

Returns:
averageOrientation

Weighted average of original Orientation field.

cloudOrientations, conditional

Symmetrically equivalent version of each orientation that were actually used in averaging.

References

J.C. Glez and J. Driver, Journal of Applied Crystallography 34:280-288, 2001 https://doi.org/10.1107/S0021889801003077

to_SST(vector, proper=False, return_operators=False)[source]#

Rotate lab frame vector to ensure it falls into (improper or proper) standard stereographic triangle of crystal symmetry.

Parameters:
vectornumpy.ndarray, shape (…,3)

Lab frame vector to align with an SST crystal frame direction. Shape of vector blends with shape of own rotation array. For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.

properbool, optional

Consider only vectors with z >= 0, hence combine two neighboring SSTs. Defaults to False.

return_operatorsbool, optional

Return the symmetrically equivalent orientation that rotated vector to SST. Defaults to False.

Returns:
vector_SSTnumpy.ndarray, shape (…,3)

Rotated vector falling into SST.

operatornumpy.ndarray of int, shape (…), conditional

Index of symmetrically equivalent orientation that rotated vector to SST.

in_SST(vector, proper=False)[source]#

Check whether given crystal frame vector falls into standard stereographic triangle of own symmetry.

Parameters:
vectornumpy.ndarray, shape (…,3)

Vector to check.

properbool, optional

Consider only vectors with z >= 0, hence combine two neighboring SSTs. Defaults to False.

Returns:
innumpy.ndarray, shape (…)

Whether vector falls into SST.

IPF_color(vector, in_SST=True, proper=False)[source]#

Map lab frame vector to RGB color within standard stereographic triangle of own symmetry.

Parameters:
vectornumpy.ndarray, shape (…,3)

Lab frame vector to colorize. Shape of vector blends with shape of own rotation array. For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.

in_SSTbool, optional

Consider symmetrically equivalent orientations such that poles are located in SST. Defaults to True.

properbool, optional

Consider only vectors with z >= 0, hence combine two neighboring SSTs (with mirrored colors). Defaults to False.

Returns:
rgbnumpy.ndarray, shape (…,3)

RGB array of IPF colors.

Examples

Inverse pole figure color of the e_3 lab direction for a crystal in “Cube” orientation with cubic symmetry:

>>> import damask
>>> o = damask.Orientation(family='cubic')
>>> o.IPF_color([0,0,1])
array([1., 0., 0.])

Sample standard triangle for hexagonal symmetry:

>>> import damask
>>> from matplotlib import pyplot as plt
>>> lab = [0,0,1]
>>> o = damask.Orientation.from_random(shape=500000,family='hexagonal')
>>> coord = damask.util.project_equal_area(o.to_SST(lab))
>>> color = o.IPF_color(lab)
>>> plt.scatter(coord[:,0],coord[:,1],color=color,s=.06)
[...]
>>> plt.axis('scaled')
[...]
>>> plt.show()
to_lattice(*, direction=None, plane=None)[source]#

Calculate lattice vector corresponding to lab frame direction or plane normal.

Parameters:
direction|planenumpy.ndarray, shape (…,3)

Real space vector along direction or reciprocal space vector along plane normal. Shape of vector blends with shape of own rotation array. For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.

Returns:
Millernumpy.ndarray, shape (…,3)

Lattice vector of direction or plane. Use util.scale_to_coprime to convert to (integer) Miller indices.

Examples

>>> import numpy as np
>>> import damask
>>> cubic = damask.Orientation.from_axis_angle(n_omega=[1,0,0,90],degrees=True,lattice='cI')
>>> cubic.to_lattice(direction=[1, 0, 0])
array([1., 0., 0.])
>>> cubic.to_lattice(direction=[0, 1, 0])
array([0., 0., -1.])
>>> cubic.to_lattice(direction=[0, 0, 1])
array([-0., 1., 0.])
>>> tetragonal = damask.Orientation(lattice='tI',c=0.5)
>>> damask.util.scale_to_coprime(tetragonal.to_lattice(direction=[1,1,1]))
array([1, 1, 2])
>>> damask.util.scale_to_coprime(tetragonal.to_lattice(plane=[1,1,1]))
array([2, 2, 1])
to_frame(*, uvw=None, hkl=None, uvtw=None, hkil=None, with_symmetry=False, normalize=True)[source]#

Calculate lab frame vector along lattice direction [uvw]/[uvtw] or plane normal (hkl)/(hkil).

Parameters:
uvw|hkl|uvtw|hkilnumpy.ndarray, shape (…,3) or shape (…,4)

Miller(–Bravais) indices of crystallographic direction or plane normal. Shape of vector blends with shape of own rotation array. For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.

with_symmetrybool, optional

Calculate all N symmetrically equivalent vectors. Defaults to False.

normalizebool, optional

Normalize output vector. Defaults to True.

Returns:
vectornumpy.ndarray, shape (…,3) or (N,…,3)

Lab frame vector (or N vectors if with_symmetry) along [uvw]/[uvtw] direction or (hkl)/(hkil) plane normal.

Schmid(*, N_slip=None, N_twin=None)[source]#

Calculate Schmid matrix P = d ⨂ n in the lab frame for selected deformation systems.

Parameters:
N_slip|N_twin‘*’ or sequence of int

Number of deformation systems per family of the deformation system. Use ‘*’ to select all.

Returns:
Pnumpy.ndarray, shape (N,…,3,3)

Schmid matrix for each of the N deformation systems.

Examples

Schmid matrix (in lab frame) of first octahedral slip system of a face-centered cubic crystal in “Goss” orientation.

>>> import numpy as np
>>> import damask
>>> O = damask.Orientation.from_Euler_angles(phi=[0,45,0],degrees=True,lattice='cF')
>>> O.Schmid(N_slip=[12])[0]
array([[ 0.000,  0.000,  0.000],
       [ 0.577, -0.000,  0.816],
       [ 0.000,  0.000,  0.000]])
related(model, target=None)[source]#

All orientations related to self by given relationship model.

Parameters:
modelstr

Orientation relationship model selected from self.orientation_relationships.

targetCrystal, optional

Crystal to transform to. Providing this parameter allows specification of non-standard lattice parameters. Default is inferred from selected model and uses standard lattice parameters.

Returns:
relOrientation, shape (:,self.shape)

Orientations related to self according to the selected model for the orientation relationship.

Examples

Face-centered cubic orientations following from a body-centered cubic crystal in “Cube” orientation according to the Bain orientation relationship (cF -> cI).

>>> import numpy as np
>>> import damask
>>> damask.Orientation(lattice='cF').related('Bain')
Crystal family: cubic
Bravais lattice: cI
a=1 m, b=1 m, c=1 m
α=90°, β=90°, γ=90°
Quaternions of shape (3,)
[[ 6.53281482e-01  2.70598050e-01  6.53281482e-01  2.70598050e-01]
 [ 2.70598050e-01 -2.70598050e-01 -6.53281482e-01 -6.53281482e-01]
 [ 9.23879533e-01 -5.55111512e-17 -2.77555756e-17 -3.82683432e-01]]
append(other)#

Extend array along first dimension with other array(s).

Parameters:
other(list of) damask.Rotation
apply(other)#

Return self@other.

Rotate vector, second-order tensor, or fourth-order tensor. other is interpreted as an array of tensor quantities with the highest-possible order considering the shape of self. Compatible innermost dimensions will blend. For instance, shapes of (2,) and (3,3) for self and other prompt interpretation of other as a second-rank tensor and result in (2,) rotated tensors, whereas shapes of (2,1) and (3,3) for self and other result in (2,3) rotated vectors.

Parameters:
othernumpy.ndarray, shape (…,3), (…,3,3), or (…,3,3,3,3)

Vector or tensor on which to apply the rotation.

Returns:
rotatednumpy.ndarray, shape (…,3), (…,3,3), or (…,3,3,3,3)

Rotated vector or tensor, i.e. transformed to frame defined by rotation.

Examples

Application of twelve (random) rotations to a set of five vectors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(12))
>>> o = np.ones((5,3))
>>> (r@o).shape                                    # (12) @ (5, 3)
(12, 5, 3)

Application of a (random) rotation to all twelve second-rank tensors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random()
>>> o = np.ones((12,3,3))
>>> (r@o).shape                                    # (1) @ (12, 3,3)
(12, 3, 3)

Application of twelve (random) rotations to the corresponding twelve second-rank tensors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(12))
>>> o = np.ones((12,3,3))
>>> (r@o).shape                                    # (12) @ (3,3)
(12, 3, 3)

Application of each of three (random) rotations to all three vectors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(3))
>>> o = np.ones((3,3))
>>> (r[...,np.newaxis]@o[np.newaxis,...]).shape    # (3,1) @ (1,3, 3)
(3, 3, 3)

Application of twelve (random) rotations to all twelve second-rank tensors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(12))
>>> o = np.ones((12,3,3))
>>> (r@o[np.newaxis,...]).shape                    # (12) @ (1,12, 3,3)
(12, 12, 3, 3)
as_Euler_angles(degrees=False)#

Represent as Bunge Euler angles.

Parameters:
degreesbool, optional

Return angles in degrees. Defaults to False.

Returns:
phinumpy.ndarray, shape (…,3)

Bunge Euler angles (φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]) or (φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True.

Notes

Bunge Euler angles correspond to a rotation axis sequence of z–x’–z’’.

Examples

Cube orientation as Bunge Euler angles.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_Euler_angles()
array([0., 0., 0.])
as_Rodrigues_vector(compact=False)#

Represent as Rodrigues–Frank vector with separate axis and angle argument.

Parameters:
compactbool, optional

Return three-component Rodrigues–Frank vector, i.e. axis and angle argument are not separated.

Returns:
rhonumpy.ndarray, shape (…,4) or (…,3) if compact == True

Rodrigues–Frank vector [n_1, n_2, n_3, tan(ω/2)] with ǀnǀ = 1 and ω ∈ [0,π] or [n_1, n_2, n_3] with ǀnǀ = tan(ω/2) and ω ∈ [0,π] if compact == True.

Examples

Cube orientation as three-component Rodrigues–Frank vector.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_Rodrigues_vector(compact=True)
array([ 0.,  0., 0.])
as_axis_angle(degrees=False, pair=False)#

Represent as axis–angle pair.

Parameters:
degreesbool, optional

Return rotation angle in degrees. Defaults to False.

pairbool, optional

Return tuple of axis and angle. Defaults to False.

Returns:
n_omeganumpy.ndarray, shape (…,4) or tuple ((…,3), (…)) if pair == True

Axis and angle [n_1, n_2, n_3, ω] with ǀnǀ = 1 and ω ∈ [0,π] or ω ∈ [0,180] if degrees == True.

Examples

Cube orientation as axis–angle pair.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_axis_angle(pair=True)
(array([0., 0., 1.]), array(0.))
as_cubochoric()#

Represent as cubochoric vector.

Returns:
xnumpy.ndarray, shape (…,3)

Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).

Examples

Cube orientation as cubochoric vector.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_cubochoric()
array([0., 0., 0.])
as_homochoric()#

Represent as homochoric vector.

Returns:
hnumpy.ndarray, shape (…,3)

Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).

Examples

Cube orientation as homochoric vector.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_homochoric()
array([0., 0., 0.])
as_matrix()#

Represent as rotation matrix.

Returns:
Rnumpy.ndarray, shape (…,3,3)

Rotation matrix R with det(R) = 1, R.T ∙ R = I.

Examples

Cube orientation as rotation matrix.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_matrix()
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])
as_quaternion()#

Represent as unit quaternion.

Returns:
qnumpy.ndarray, shape (…,4)

Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 ≥ 0.

property basis_real#

Return orthogonal real space crystal basis.

References

C.T. Young and J.L. Lytton, Journal of Applied Physics 43:1408–1417, 1972 https://doi.org/10.1063/1.1661333

property basis_reciprocal#

Return reciprocal (dual) crystal basis.

broadcast_to(shape, mode='right')#

Broadcast array.

Parameters:
shape(sequence of) int

Shape of broadcasted array, needs to be compatible with the original shape.

modestr, optional

Where to preferentially locate missing dimensions. Either ‘left’ or ‘right’ (default).

Returns:
broadcasteddamask.Rotation

Rotation broadcasted to given shape.

flatten(order='C')#

Flatten array.

Parameters:
order{‘C’, ‘F’, ‘A’}, optional

‘C’ flattens in row-major (C-style) order. ‘F’ flattens in column-major (Fortran-style) order. ‘A’ flattens in column-major order if object is Fortran contiguous in memory, row-major order otherwise. Defaults to ‘C’.

Returns:
flatteneddamask.Rotation

Rotation flattened to single dimension.

property immutable#

Return immutable lattice parameters.

kinematics(mode)#

Return crystal kinematics systems.

Parameters:
mode{‘slip’,’twin’}

Deformation mode.

Returns:
direction_planedictionary

Directions and planes of deformation mode families.

property lattice_points#

Return lattice points.

misorientation(other)#

Calculate misorientation to other Rotation.

Parameters:
otherdamask.Rotation

Rotation to which the misorientation is computed. Compatible innermost dimensions will blend.

Returns:
gdamask.Rotation

Misorientation.

property orientation_relationships#

Return labels of orientation relationships.

property parameters#

Return lattice parameters a, b, c, alpha, beta, gamma.

property ratio#

Return axes ratios of own lattice.

relation_operations(model, target=None)#

Crystallographic orientation relationships for phase transformations.

Parameters:
modelstr

Name of orientation relationship.

targetCrystal, optional

Crystal to transform to. Providing this parameter allows specification of non-standard lattice parameters. Default is inferred from selected model and uses standard lattice parameters.

Returns:
operations(string, damask.Rotation)

Resulting lattice and rotations characterizing the orientation relationship.

References

S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013 https://doi.org/10.1016/j.jallcom.2012.02.004

K. Kitahara et al., Acta Materialia 54(5):1279-1288, 2006 https://doi.org/10.1016/j.actamat.2005.11.001

Y. He et al., Journal of Applied Crystallography 39:72-81, 2006 https://doi.org/10.1107/S0021889805038276

H. Kitahara et al., Materials Characterization 54(4-5):378-386, 2005 https://doi.org/10.1016/j.matchar.2004.12.015

Y. He et al., Acta Materialia 53(4):1179-1190, 2005 https://doi.org/10.1016/j.actamat.2004.11.021

reshape(newshape, order='C')#

Reshape array.

Parameters:
newshape(sequence of) int

The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length.

order{‘C’, ‘F’, ‘A’}, optional

‘C’ flattens in row-major (C-style) order. ‘F’ flattens in column-major (Fortran-style) order. ‘A’ flattens in column-major order if object is Fortran contiguous in memory, row-major order otherwise. Defaults to ‘C’.

Returns:
reshapeddamask.Rotation

Rotation of given shape.

property standard_triangle#

Corners of the standard triangle.

Notes

Not yet defined for monoclinic.

References

Bases are computed from

>>> basis = {
...    'cubic' :       np.linalg.inv(np.array([[0.,0.,1.],                           # direction of red
...                                            [1.,0.,1.]/np.sqrt(2.),               #              green
...                                            [1.,1.,1.]/np.sqrt(3.)]).T),          #              blue
...    'hexagonal' :   np.linalg.inv(np.array([[0.,0.,1.],                           # direction of red
...                                            [1.,0.,0.],                           #              green
...                                            [np.sqrt(3.),1.,0.]/np.sqrt(4.)]).T), #              blue
...    'tetragonal' :  np.linalg.inv(np.array([[0.,0.,1.],                           # direction of red
...                                            [1.,0.,0.],                           #              green
...                                            [1.,1.,0.]/np.sqrt(2.)]).T),          #              blue
...    'orthorhombic': np.linalg.inv(np.array([[0.,0.,1.],                           # direction of red
...                                            [1.,0.,0.],                           #              green
...                                            [0.,1.,0.]]).T),                      #              blue
...    }
property symmetry_operations#

Return symmetry operations.

References

U.F. Kocks et al., Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties. Cambridge University Press 1998. Table II


tensor#

Tensor mathematics.

All routines operate on numpy.ndarrays of shape (…,3,3).

damask.tensor.deviatoric(T)[source]#

Calculate deviatoric part of a tensor.

Parameters:
Tnumpy.ndarray, shape (…,3,3)

Tensor of which the deviatoric part is computed.

Returns:
T’numpy.ndarray, shape (…,3,3)

Deviatoric part of T.

damask.tensor.eigenvalues(T_sym)[source]#

Eigenvalues, i.e. principal components, of a symmetric tensor.

Parameters:
T_symnumpy.ndarray, shape (…,3,3)

Symmetric tensor of which the eigenvalues are computed.

Returns:
lambdanumpy.ndarray, shape (…,3)

Eigenvalues of T_sym sorted in ascending order, each repeated according to its multiplicity.

damask.tensor.eigenvectors(T_sym, RHS=False)[source]#

Eigenvectors of a symmetric tensor.

Parameters:
T_symnumpy.ndarray, shape (…,3,3)

Symmetric tensor of which the eigenvectors are computed.

RHS: bool, optional

Enforce right-handed coordinate system. Defaults to False.

Returns:
xnumpy.ndarray, shape (…,3,3)

Eigenvectors of T_sym sorted in ascending order of their associated eigenvalues.

damask.tensor.spherical(T, tensor=True)[source]#

Calculate spherical part of a tensor.

Parameters:
Tnumpy.ndarray, shape (…,3,3)

Tensor of which the spherical part is computed.

tensorbool, optional

Map spherical part onto identity tensor. Defaults to True.

Returns:
pnumpy.ndarray, shape (…,3,3)

unless tensor == False: shape (…,) Spherical part of tensor T. p is an isotropic tensor.

damask.tensor.symmetric(T)[source]#

Symmetrize tensor.

Parameters:
Tnumpy.ndarray, shape (…,3,3)

Tensor of which the symmetrized values are computed.

Returns:
T_symnumpy.ndarray, shape (…,3,3)

Symmetrized tensor T.

damask.tensor.transpose(T)[source]#

Transpose tensor.

Parameters:
Tnumpy.ndarray, shape (…,3,3)

Tensor of which the transpose is computed.

Returns:
T.Tnumpy.ndarray, shape (…,3,3)

Transpose of tensor T.


mechanics#

Finite-strain continuum mechanics.

All routines operate on numpy.ndarrays of shape (…,3,3).

damask.mechanics.deformation_Cauchy_Green_left(F)[source]#

Calculate left Cauchy-Green deformation tensor (Finger deformation tensor).

Parameters:
Fnumpy.ndarray, shape (…,3,3)

Deformation gradient.

Returns:
Bnumpy.ndarray, shape (…,3,3)

Left Cauchy-Green deformation tensor.

Notes

\[\vb{B} = \vb{F} \vb{F}^\text{T}\]
damask.mechanics.deformation_Cauchy_Green_right(F)[source]#

Calculate right Cauchy-Green deformation tensor.

Parameters:
Fnumpy.ndarray, shape (…,3,3)

Deformation gradient.

Returns:
Cnumpy.ndarray, shape (…,3,3)

Right Cauchy-Green deformation tensor.

Notes

\[\vb{C} = \vb{F}^\text{T} \vb{F}\]
damask.mechanics.equivalent_strain_Mises(epsilon)[source]#

Calculate the Mises equivalent of a strain tensor.

Parameters:
epsilonnumpy.ndarray, shape (…,3,3)

Symmetric strain tensor of which the von Mises equivalent is computed.

Returns:
epsilon_vMnumpy.ndarray, shape (…)

Von Mises equivalent strain of epsilon.

Notes

The von Mises equivalent of a strain tensor is defined as:

\[\epsilon_\text{vM} = \sqrt{\frac{2}{3}\,\epsilon^\prime_{ij} \epsilon^\prime_{ij}}\]

where \(\vb*{\epsilon}^\prime\) is the deviatoric part of the strain tensor.

damask.mechanics.equivalent_stress_Mises(sigma)[source]#

Calculate the Mises equivalent of a stress tensor.

Parameters:
sigmanumpy.ndarray, shape (…,3,3)

Symmetric stress tensor of which the von Mises equivalent is computed.

Returns:
sigma_vMnumpy.ndarray, shape (…)

Von Mises equivalent stress of sigma.

Notes

The von Mises equivalent of a stress tensor is defined as:

\[\sigma_\text{vM} = \sqrt{\frac{3}{2}\,\sigma^\prime_{ij} \sigma^\prime_{ij}}\]

where \(\vb*{\sigma}^\prime\) is the deviatoric part of the stress tensor.

damask.mechanics.maximum_shear(T_sym)[source]#

Calculate the maximum shear component of a symmetric tensor.

Parameters:
T_symnumpy.ndarray, shape (…,3,3)

Symmetric tensor of which the maximum shear is computed.

Returns:
gamma_maxnumpy.ndarray, shape (…)

Maximum shear of T_sym.

damask.mechanics.rotation(T)[source]#

Calculate the rotational part of a tensor.

Parameters:
Tnumpy.ndarray, shape (…,3,3)

Tensor of which the rotational part is computed.

Returns:
Rdamask.Rotation, shape (…)

Rotational part of the vector.

Notes

The rotational part is calculated from the polar decomposition:

\[\vb{R} = \vb{T} \vb{U}^{-1} = \vb{V}^{-1} \vb{T}\]

where \(\vb{V}\) and \(\vb{U}\) are the left and right stretch tensor, respectively.

damask.mechanics.strain(F, t, m)[source]#

Calculate strain tensor (Seth–Hill family).

Parameters:
Fnumpy.ndarray, shape (…,3,3)

Deformation gradient.

t{‘V’, ‘U’}

Type of the polar decomposition, ‘V’ for left stretch tensor or ‘U’ for right stretch tensor.

mfloat

Order of the strain.

Returns:
epsilonnumpy.ndarray, shape (…,3,3)

Strain of F.

Notes

The strain is defined as:

\[\begin{split}\vb*{\epsilon}_V^{(m)} = \frac{1}{2m} (\vb{V}^{2m} - \vb{I}) \\\\ \vb*{\epsilon}_U^{(m)} = \frac{1}{2m} (\vb{U}^{2m} - \vb{I})\end{split}\]

References

damask.mechanics.stress_Cauchy(P, F)[source]#

Calculate the Cauchy stress (true stress).

Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.

Parameters:
Pnumpy.ndarray, shape (…,3,3)

First Piola-Kirchhoff stress.

Fnumpy.ndarray, shape (…,3,3)

Deformation gradient.

Returns:
sigmanumpy.ndarray, shape (…,3,3)

Cauchy stress.

damask.mechanics.stress_second_Piola_Kirchhoff(P, F)[source]#

Calculate the second Piola-Kirchhoff stress.

Resulting tensor is symmetrized as the second Piola-Kirchhoff stress needs to be symmetric.

Parameters:
Pnumpy.ndarray, shape (…,3,3)

First Piola-Kirchhoff stress.

Fnumpy.ndarray, shape (…,3,3)

Deformation gradient.

Returns:
Snumpy.ndarray, shape (…,3,3)

Second Piola-Kirchhoff stress.

damask.mechanics.stretch_left(T)[source]#

Calculate left stretch of a tensor.

Parameters:
Tnumpy.ndarray, shape (…,3,3)

Tensor of which the left stretch is computed.

Returns:
Vnumpy.ndarray, shape (…,3,3)

Left stretch tensor from Polar decomposition of T.

Notes

The left stretch tensor is calculated from the polar decomposition:

\[\vb{V} = \vb{T} \vb{R}^\text{T}\]

where \(\vb{R}\) is a rotation.

damask.mechanics.stretch_right(T)[source]#

Calculate right stretch of a tensor.

Parameters:
Tnumpy.ndarray, shape (…,3,3)

Tensor of which the right stretch is computed.

Returns:
Unumpy.ndarray, shape (…,3,3)

Left stretch tensor from Polar decomposition of T.

Notes

The right stretch tensor is calculated from the polar decomposition:

\[\vb{U} = \vb{R}^\text{T} \vb{T}\]

where \(\vb{R}\) is a rotation.