Source code for damask._rotation

import sys
import copy
from typing import Optional, Union, Sequence, Tuple, Literal, List, TypeVar

import numpy as np

from ._typehints import FloatSequence, IntSequence, NumpyRngSeed
from . import tensor
from . import util
from . import grid_filters

_P = -1

# parameters for conversion from/to cubochoric
_sc   = np.pi**(1./6.)/6.**(1./6.)
_beta = np.pi**(5./6.)/6.**(1./6.)/2.
_R1   = (3.*np.pi/4.)**(1./3.)

MyType = TypeVar('MyType', bound='Rotation')

[docs] class Rotation: u""" Rotation with functionality for conversion between different representations. The following conventions apply: - Coordinate frames are right-handed. - A rotation angle ω is taken to be positive for a counterclockwise rotation when viewing from the end point of the rotation axis towards the origin. - Rotations will be interpreted in the passive sense, i.e. as rotation of the coordinate frame. - P = -1 (as default). Examples -------- Rotate vector 'a' (defined in coordinate system 'A') to coordinates 'b' expressed in system 'B': >>> import numpy as np >>> import damask >>> Q = damask.Rotation.from_random() >>> a = np.random.rand(3) >>> b = Q @ a >>> np.allclose(np.dot(Q.as_matrix(),a),b) True Compound rotations R1 (first) and R2 (second): >>> import numpy as np >>> import damask >>> R1 = damask.Rotation.from_random() >>> R2 = damask.Rotation.from_random() >>> R = R2 * R1 >>> np.allclose(R.as_matrix(), np.dot(R2.as_matrix(),R1.as_matrix())) True References ---------- D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015 https://doi.org/10.1088/0965-0393/23/8/083501 """ __slots__ = ['quaternion'] def __init__(self, rotation: Union[FloatSequence, 'Rotation'] = np.array([1.,0.,0.,0.])): """ New rotation. Parameters ---------- rotation : list, numpy.ndarray, or Rotation, optional Unit quaternion in positive real hemisphere. Use .from_quaternion to perform a sanity check. Defaults to no rotation. """ self.quaternion: np.ndarray if isinstance(rotation,Rotation): self.quaternion = rotation.quaternion.copy() elif np.array(rotation).shape[-1] == 4: self.quaternion = np.array(rotation,dtype=float) else: raise TypeError('"rotation" is neither a Rotation nor a quaternion') def __repr__(self) -> str: """ Return repr(self). Give short, human-readable summary. """ return f'Quaternion{" " if self.quaternion.shape == (4,) else "s of shape "+str(self.quaternion.shape[:-1])+chr(10)}'\ + str(self.quaternion) def __copy__(self: MyType, rotation: Union[None, FloatSequence, 'Rotation'] = None) -> MyType: """ Return deepcopy(self). Create deep copy. """ dup = copy.deepcopy(self) if rotation is not None: dup.quaternion = Rotation(rotation).quaternion return dup copy = __copy__ def __getitem__(self, item: Union[Tuple[Union[None, int, slice]], int, bool, np.bool_, np.ndarray]): """ Return self[item]. Return slice according to item. """ return self.copy() if self.shape == () else \ self.copy(self.quaternion[item+(slice(None),)] if isinstance(item,tuple) else self.quaternion[item]) def __eq__(self, other: object) -> bool: """ Return self==other. Test equality of other. Parameters ---------- other : Rotation Rotation to check for equality. """ return NotImplemented if not isinstance(other, Rotation) else \ np.logical_or(np.all(self.quaternion == other.quaternion,axis=-1), np.all(self.quaternion == -1.*other.quaternion,axis=-1)) def __ne__(self, other: object) -> bool: """ Return self!=other. Test inequality of other. Parameters ---------- other : Rotation Rotation to check for inequality. """ return np.logical_not(self==other) if isinstance(other, Rotation) else NotImplemented
[docs] def isclose(self: MyType, other: MyType, rtol: float = 1.e-5, atol: float = 1.e-8, equal_nan: bool = True) -> bool: """ Report where values are approximately equal to corresponding ones of other Rotation. Parameters ---------- other : Rotation Rotation to compare against. rtol : float, optional Relative tolerance of equality. atol : float, optional Absolute tolerance of equality. equal_nan : bool, optional Consider matching NaN values as equal. Defaults to True. Returns ------- mask : numpy.ndarray of bool, shape (self.shape) Mask indicating where corresponding rotations are close. """ s = self.quaternion o = other.quaternion return np.logical_or(np.all(np.isclose(s, o,rtol,atol,equal_nan),axis=-1), np.all(np.isclose(s,-1.*o,rtol,atol,equal_nan),axis=-1))
[docs] def allclose(self: MyType, other: MyType, rtol: float = 1.e-5, atol: float = 1.e-8, equal_nan: bool = True) -> Union[np.bool_, bool]: """ Test whether all values are approximately equal to corresponding ones of other Rotation. Parameters ---------- other : Rotation Rotation to compare against. rtol : float, optional Relative tolerance of equality. atol : float, optional Absolute tolerance of equality. equal_nan : bool, optional Consider matching NaN values as equal. Defaults to True. Returns ------- answer : bool Whether all values are close between both rotations. """ return np.all(self.isclose(other,rtol,atol,equal_nan))
def __array__(self): """Initializer for numpy.""" return self.quaternion @property def size(self) -> int: return self.quaternion[...,0].size @property def shape(self) -> Tuple[int, ...]: return self.quaternion[...,0].shape def __len__(self) -> int: """ Return len(self). Length of leading/leftmost dimension of array. """ return 0 if self.shape == () else self.shape[0] def __invert__(self: MyType) -> MyType: """ Return ~self. Inverse rotation (backward rotation). """ dup = self.copy() dup.quaternion[...,1:] *= -1. return dup def __pow__(self: MyType, exp: Union[float, int]) -> MyType: """ Return self**exp. Perform the rotation 'exp' times. Parameters ---------- exp : float Exponent. """ phi = np.arccos(self.quaternion[...,0:1]) p = self.quaternion[...,1:]/np.linalg.norm(self.quaternion[...,1:],axis=-1,keepdims=True) return self.copy(Rotation(np.block([np.cos(exp*phi),np.sin(exp*phi)*p]))._standardize()) def __ipow__(self: MyType, exp: Union[float, int]) -> MyType: """ Return self**=exp. Perform the rotation 'exp' times (in-place). Parameters ---------- exp : float Exponent. """ return self**exp def __mul__(self: MyType, other: MyType) -> MyType: """ Return self*other. Compose with other. Parameters ---------- other : Rotation, shape (self.shape) Rotation for composition. Compatible innermost dimensions will blend. Returns ------- composition : Rotation Compound rotation self*other, i.e. first other then self rotation. """ if isinstance(other,Rotation): blend = util.shapeblender( self.shape,other.shape) s_m = util.shapeshifter( self.shape,blend,mode='right') s_o = util.shapeshifter(other.shape,blend,mode='left') q_m = self.broadcast_to(s_m).quaternion[...,0:1] p_m = self.broadcast_to(s_m).quaternion[...,1:] q_o = other.broadcast_to(s_o).quaternion[...,0:1] p_o = other.broadcast_to(s_o).quaternion[...,1:] qmo = q_m*q_o q = (qmo - np.einsum('...i,...i',p_m,p_o).reshape(qmo.shape)) p = q_m*p_o + q_o*p_m + _P * np.cross(p_m,p_o) return self.copy(Rotation(np.block([q,p]))._standardize()) else: raise TypeError('use "R@b", i.e. matmul, to apply rotation "R" to object "b"') def __imul__(self: MyType, other: MyType) -> MyType: """ Return self*=other. Compose with other (in-place). Parameters ---------- other : Rotation, shape (self.shape) Rotation for composition. Compatible innermost dimensions will blend. """ return self*other def __truediv__(self: MyType, other: MyType) -> MyType: """ Return self/other. Compose with inverse of other. Parameters ---------- other : damask.Rotation, shape (self.shape) Rotation to invert for composition. Compatible innermost dimensions will blend. Returns ------- composition : Rotation Compound rotation self*(~other), i.e. first inverse of other then self rotation. """ if isinstance(other,Rotation): return self*~other else: raise TypeError('use "R@b", i.e. matmul, to apply rotation "R" to object "b"') def __itruediv__(self: MyType, other: MyType) -> MyType: """ Return self/=other. Compose with inverse of other (in-place). Parameters ---------- other : Rotation, shape (self.shape) Rotation to invert for composition. """ return self/other def __matmul__(self, other: np.ndarray) -> np.ndarray: """ Return self@other. Rotate vector, second-order tensor, or fourth-order tensor. `other` is interpreted as an array of tensor quantities with the highest-possible order considering the shape of `self`. Compatible innermost dimensions will blend. For instance, shapes of (2,) and (3,3) for `self` and `other` prompt interpretation of `other` as a second-rank tensor and result in (2,) rotated tensors, whereas shapes of (2,1) and (3,3) for `self` and `other` result in (2,3) rotated vectors. Parameters ---------- other : numpy.ndarray, shape (...,3), (...,3,3), or (...,3,3,3,3) Vector or tensor on which to apply the rotation. Returns ------- rotated : numpy.ndarray, shape (...,3), (...,3,3), or (...,3,3,3,3) Rotated vector or tensor, i.e. transformed to frame defined by rotation. Examples -------- Application of twelve (random) rotations to a set of five vectors. >>> import numpy as np >>> import damask >>> r = damask.Rotation.from_random(shape=(12)) >>> o = np.ones((5,3)) >>> (r@o).shape # (12) @ (5, 3) (12, 5, 3) Application of a (random) rotation to all twelve second-rank tensors. >>> import numpy as np >>> import damask >>> r = damask.Rotation.from_random() >>> o = np.ones((12,3,3)) >>> (r@o).shape # (1) @ (12, 3,3) (12, 3, 3) Application of twelve (random) rotations to the corresponding twelve second-rank tensors. >>> import numpy as np >>> import damask >>> r = damask.Rotation.from_random(shape=(12)) >>> o = np.ones((12,3,3)) >>> (r@o).shape # (12) @ (3,3) (12, 3, 3) Application of each of three (random) rotations to all three vectors. >>> import numpy as np >>> import damask >>> r = damask.Rotation.from_random(shape=(3)) >>> o = np.ones((3,3)) >>> (r[...,np.newaxis]@o[np.newaxis,...]).shape # (3,1) @ (1,3, 3) (3, 3, 3) Application of twelve (random) rotations to all twelve second-rank tensors. >>> import numpy as np >>> import damask >>> r = damask.Rotation.from_random(shape=(12)) >>> o = np.ones((12,3,3)) >>> (r@o[np.newaxis,...]).shape # (12) @ (1,12, 3,3) (12, 12, 3, 3) """ if isinstance(other, np.ndarray): obs = (util.shapeblender(self.shape,other.shape[:-1])+other.shape[-1:])[len(self.shape):] for l in [4,2,1]: if obs[-l:] == l*(3,): bs = util.shapeblender(self.shape,other.shape[:-l],False) self_ = self.broadcast_to(bs) if self.shape != bs else self if l==1: q_m = self_.quaternion[...,0] p_m = self_.quaternion[...,1:] A = q_m**2 - np.einsum('...i,...i',p_m,p_m) B = 2. * np.einsum('...i,...i',p_m,other) C = 2. * _P * q_m return np.block([(A * other[...,i]) + (B * p_m[...,i]) + (C * ( p_m[...,(i+1)%3]*other[...,(i+2)%3] - p_m[...,(i+2)%3]*other[...,(i+1)%3])) for i in [0,1,2]]).reshape(bs+(3,),order='F') else: return np.einsum({2: '...im,...jn,...mn', 4: '...im,...jn,...ko,...lp,...mnop'}[l], *l*[self_.as_matrix()], other) raise ValueError('can only rotate vectors, second-order tensors, and fourth-order tensors') elif isinstance(other, Rotation): raise TypeError('use "R2*R1", i.e. multiplication, to compose rotations "R1" and "R2"') else: raise TypeError(f'cannot rotate "{type(other)}"') apply = __matmul__ def _standardize(self: MyType) -> MyType: """Standardize quaternion (ensure positive real hemisphere).""" self.quaternion[self.quaternion[...,0] < 0.] *= -1. return self
[docs] def append(self: MyType, other: Union[MyType, List[MyType]]) -> MyType: """ Extend array along first dimension with other array(s). Parameters ---------- other : (list of) damask.Rotation """ return self.copy(np.vstack(tuple(map(lambda x:x.quaternion, [self]+other if isinstance(other,list) else [self,other]))))
[docs] def flatten(self: MyType, order: Literal['C','F','A'] = 'C') -> MyType: """ Flatten array. Parameters ---------- order : {'C', 'F', 'A'}, optional 'C' flattens in row-major (C-style) order. 'F' flattens in column-major (Fortran-style) order. 'A' flattens in column-major order if object is Fortran contiguous in memory, row-major order otherwise. Defaults to 'C'. Returns ------- flattened : damask.Rotation Rotation flattened to single dimension. """ return self.copy(self.quaternion.reshape((-1,4),order=order))
[docs] def reshape(self: MyType, newshape: Union[int, IntSequence], order: Literal['C','F','A'] = 'C') -> MyType: """ Reshape array. Parameters ---------- newshape : (sequence of) int The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. order : {'C', 'F', 'A'}, optional 'C' flattens in row-major (C-style) order. 'F' flattens in column-major (Fortran-style) order. 'A' flattens in column-major order if object is Fortran contiguous in memory, row-major order otherwise. Defaults to 'C'. Returns ------- reshaped : damask.Rotation Rotation of given shape. """ shape = (newshape,) if isinstance(newshape,(int,np.integer)) else newshape return self.copy(self.quaternion.reshape(tuple(shape)+(4,),order=order))
[docs] def broadcast_to(self: MyType, shape: Union[int, IntSequence], mode: Literal['left', 'right'] = 'right') -> MyType: """ Broadcast array. Parameters ---------- shape : (sequence of) int Shape of broadcasted array, needs to be compatible with the original shape. mode : str, optional Where to preferentially locate missing dimensions. Either 'left' or 'right' (default). Returns ------- broadcasted : damask.Rotation Rotation broadcasted to given shape. """ shape_ = (shape,) if isinstance(shape,(int,np.integer)) else tuple(shape) return self.copy(np.broadcast_to(self.quaternion.reshape(util.shapeshifter(self.shape,shape_,mode)+(4,)), shape_+(4,)))
[docs] def average(self: MyType, weights: Optional[FloatSequence] = None) -> MyType: """ Average along last array dimension. Parameters ---------- weights : numpy.ndarray, shape (self.shape), optional Relative weight of each rotation. Returns ------- average : damask.Rotation Weighted average of original Rotation field. References ---------- F. Landis Markley et al., Journal of Guidance, Control, and Dynamics 30(4):1193-1197, 2007 https://doi.org/10.2514/1.28949 """ def _M(quat): """Intermediate representation supporting quaternion averaging.""" return np.einsum('...i,...j',quat,quat) weights_ = np.ones(self.shape,dtype=float) if weights is None else np.array(weights,float) eig, vec = np.linalg.eig(np.sum(_M(self.quaternion) * weights_[...,np.newaxis,np.newaxis],axis=-3) /np.sum( weights_[...,np.newaxis,np.newaxis],axis=-3)) return self.copy(Rotation.from_quaternion(np.real( np.squeeze( np.take_along_axis(vec, eig.argmax(axis=-1)[...,np.newaxis,np.newaxis], axis=-1), axis=-1)), accept_homomorph = True))
[docs] def misorientation(self: MyType, other: MyType) -> MyType: """ Calculate misorientation to other Rotation. Parameters ---------- other : damask.Rotation Rotation to which the misorientation is computed. Compatible innermost dimensions will blend. Returns ------- g : damask.Rotation Misorientation. """ return ~(self*~other)
################################################################################################ # convert to different orientation representations (numpy arrays)
[docs] def as_quaternion(self) -> np.ndarray: """ Represent as unit quaternion. Returns ------- q : numpy.ndarray, shape (...,4) Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 ≥ 0. """ return self.quaternion.copy()
[docs] def as_Euler_angles(self, degrees: bool = False) -> np.ndarray: """ Represent as Bunge Euler angles. Parameters ---------- degrees : bool, optional Return angles in degrees. Defaults to False. Returns ------- phi : numpy.ndarray, shape (...,3) Bunge Euler angles (φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]) or (φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True. Notes ----- Bunge Euler angles correspond to a rotation axis sequence of z–x'–z''. Examples -------- Cube orientation as Bunge Euler angles. >>> import damask >>> damask.Rotation([1,0,0,0]).as_Euler_angles() array([0., 0., 0.]) """ eu = Rotation._qu2eu(self.quaternion) return np.degrees(eu) if degrees else eu
[docs] def as_axis_angle(self, degrees: bool = False, pair: bool = False) -> Union[Tuple[np.ndarray, np.ndarray], np.ndarray]: """ Represent as axis–angle pair. Parameters ---------- degrees : bool, optional Return rotation angle in degrees. Defaults to False. pair : bool, optional Return tuple of axis and angle. Defaults to False. Returns ------- n_omega : numpy.ndarray, shape (...,4) or tuple ((...,3), (...)) if pair == True Axis and angle [n_1, n_2, n_3, ω] with ǀnǀ = 1 and ω ∈ [0,π] or ω ∈ [0,180] if degrees == True. Examples -------- Cube orientation as axis–angle pair. >>> import damask >>> damask.Rotation([1,0,0,0]).as_axis_angle(pair=True) (array([0., 0., 1.]), array(0.)) """ ax: np.ndarray = Rotation._qu2ax(self.quaternion) if degrees: ax[...,3] = np.degrees(ax[...,3]) return (ax[...,:3],ax[...,3]) if pair else ax
[docs] def as_matrix(self) -> np.ndarray: """ Represent as rotation matrix. Returns ------- R : numpy.ndarray, shape (...,3,3) Rotation matrix R with det(R) = 1, R.T ∙ R = I. Examples -------- Cube orientation as rotation matrix. >>> import damask >>> damask.Rotation([1,0,0,0]).as_matrix() array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) """ return Rotation._qu2om(self.quaternion)
[docs] def as_Rodrigues_vector(self, compact: bool = False) -> np.ndarray: """ Represent as Rodrigues–Frank vector with separate axis and angle argument. Parameters ---------- compact : bool, optional Return three-component Rodrigues–Frank vector, i.e. axis and angle argument are not separated. Returns ------- rho : numpy.ndarray, shape (...,4) or (...,3) if compact == True Rodrigues–Frank vector [n_1, n_2, n_3, tan(ω/2)] with ǀnǀ = 1 and ω ∈ [0,π] or [n_1, n_2, n_3] with ǀnǀ = tan(ω/2) and ω ∈ [0,π] if compact == True. Examples -------- Cube orientation as three-component Rodrigues–Frank vector. >>> import damask >>> damask.Rotation([1,0,0,0]).as_Rodrigues_vector(compact=True) array([ 0., 0., 0.]) """ ro = Rotation._qu2ro(self.quaternion) if compact: with np.errstate(invalid='ignore'): return ro[...,:3]*ro[...,3:4] else: return ro
[docs] def as_homochoric(self) -> np.ndarray: """ Represent as homochoric vector. Returns ------- h : numpy.ndarray, shape (...,3) Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3π/4)^(1/3). Examples -------- Cube orientation as homochoric vector. >>> import damask >>> damask.Rotation([1,0,0,0]).as_homochoric() array([0., 0., 0.]) """ return Rotation._qu2ho(self.quaternion)
[docs] def as_cubochoric(self) -> np.ndarray: """ Represent as cubochoric vector. Returns ------- x : numpy.ndarray, shape (...,3) Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2 π^(2/3). Examples -------- Cube orientation as cubochoric vector. >>> import damask >>> damask.Rotation([1,0,0,0]).as_cubochoric() array([0., 0., 0.]) """ return Rotation._qu2cu(self.quaternion)
################################################################################################ # Static constructors. The input data needs to follow the conventions, options allow to # relax the conventions.
[docs] @staticmethod def from_quaternion(q: Union[Sequence[FloatSequence], np.ndarray], accept_homomorph: bool = False, normalize: bool = False, P: Literal[1, -1] = -1) -> 'Rotation': """ Initialize from quaternion. Parameters ---------- q : numpy.ndarray, shape (...,4) Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1 and q_0 ≥ 0. accept_homomorph : bool, optional Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere). Defaults to False. normalize: bool, optional Allow ǀqǀ ≠ 1. Defaults to False. P : int ∈ {-1,1}, optional Sign convention. Defaults to -1. Returns ------- new : damask.Rotation Examples -------- >>> import damask >>> damask.Rotation.from_quaternion([[1,0,0,0],[0,1,0,0]]) Quaternions of shape (2,) [[1. 0. 0. 0.] [0. 1. 0. 0.]] """ qu = np.array(q,dtype=float) if qu.shape[:-2:-1] != (4,): raise ValueError(f'invalid shape: {qu.shape}') if abs(P) != 1: raise ValueError('P ∉ {-1,1}') if P == 1: qu[...,1:4] *= -1 if accept_homomorph: qu[qu[...,0]<0.] *= -1. elif np.any(qu[...,0] < 0.): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'quaternion with negative first (real) component\n{qu}') if normalize: qu /= np.linalg.norm(qu,axis=-1,keepdims=True) elif not np.allclose(np.linalg.norm(qu,axis=-1),1.,rtol=1.e-8): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'quaternion is not of unit length\n{qu}') return Rotation(qu)
[docs] @staticmethod def from_Euler_angles(phi: np.ndarray, degrees: bool = False) -> 'Rotation': """ Initialize from Bunge Euler angles. Parameters ---------- phi : numpy.ndarray, shape (...,3) Euler angles (φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]) or (φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True. degrees : bool, optional Euler angles are given in degrees. Defaults to False. Returns ------- new : damask.Rotation Notes ----- Bunge Euler angles correspond to a rotation axis sequence of z–x'–z''. Examples -------- >>> import damask >>> damask.Rotation.from_Euler_angles([180,0,0],degrees=True) Quaternion [0. 0. 0. 1.] """ eu = np.array(phi,dtype=float) if eu.shape[:-2:-1] != (3,): raise ValueError(f'invalid shape: {eu.shape}') eu = np.radians(eu) if degrees else eu if np.any(eu < 0.) or np.any(eu > np.pi*np.array([2.,1.,2.])): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'Euler angles outside of [0..2π],[0..π],[0..2π]\n{eu}') return Rotation(Rotation._eu2qu(eu))
[docs] @staticmethod def from_axis_angle(n_omega: np.ndarray, degrees: bool = False, normalize: bool = False, P: Literal[1, -1] = -1) -> 'Rotation': """ Initialize from axis–angle pair. Parameters ---------- n_omega : numpy.ndarray, shape (...,4) Axis and angle (n_1, n_2, n_3, ω) with ǀnǀ = 1 and ω ∈ [0,π] or ω ∈ [0,180] if degrees == True. degrees : bool, optional Angle ω is given in degrees. Defaults to False. normalize: bool, optional Allow ǀnǀ ≠ 1. Defaults to False. P : int ∈ {-1,1}, optional Sign convention. Defaults to -1. Returns ------- new : damask.Rotation Examples -------- >>> import damask >>> damask.Rotation.from_axis_angle([[0,0,1,90],[1,0,0,90]],degrees=True) Quaternions of shape (2,) [[0.707 0. 0. 0.707] [0.707 0.707 0. 0. ]] """ ax = np.array(n_omega,dtype=float) if ax.shape[:-2:-1] != (4,): raise ValueError(f'invalid shape: {ax.shape}') if abs(P) != 1: raise ValueError('P ∉ {-1,1}') if P == 1: ax[...,0:3] *= -1 if degrees: ax[..., 3] = np.radians(ax[...,3]) if np.any(ax[...,3] < 0.) or np.any(ax[...,3] > np.pi): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'axis–angle rotation angle outside of [0..π]\n{ax}') if normalize: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1,keepdims=True) elif not np.allclose(np.linalg.norm(ax[...,0:3],axis=-1),1.): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'axis–angle rotation axis is not of unit length\n{ax}') return Rotation(Rotation._ax2qu(ax))
[docs] @staticmethod def from_basis(basis: np.ndarray, orthonormal: bool = True, reciprocal: bool = False) -> 'Rotation': """ Initialize from basis vector triplet. Parameters ---------- basis : numpy.ndarray, shape (...,3,3) Three three-dimensional basis vectors. orthonormal : bool, optional Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True. reciprocal : bool, optional Basis vectors are given in reciprocal (instead of real) space. Defaults to False. Returns ------- new : damask.Rotation """ om = np.array(basis,dtype=float) if om.shape[-2:] != (3,3): raise ValueError(f'invalid shape: {om.shape}') if reciprocal: om = np.linalg.inv(tensor.transpose(om)/np.pi) # transform reciprocal basis set orthonormal = False # contains stretch if not orthonormal: U, _, Vh = np.linalg.svd(om) # singular value decomposition om = np.einsum('...ij,...jl',U,Vh) elif (np.abs(np.einsum('...i,...i',om[...,0],om[...,1])) > 5.e-8).any() \ or (np.abs(np.einsum('...i,...i',om[...,1],om[...,2])) > 5.e-8).any() \ or (np.abs(np.einsum('...i,...i',om[...,2],om[...,0])) > 5.e-8).any(): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'orientation matrix is not orthogonal\n{om}') if not np.allclose(np.linalg.det(om),1.): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'orientation matrix has determinant ≠ 1\n{om}') return Rotation(Rotation._om2qu(om))
[docs] @staticmethod def from_matrix(R: np.ndarray, normalize: bool = False) -> 'Rotation': """ Initialize from rotation matrix. Parameters ---------- R : numpy.ndarray, shape (...,3,3) Rotation matrix with det(R) = 1 and R.T ∙ R = I. normalize : bool, optional Rescales rotation matrix to unit determinant. Defaults to False. Returns ------- new : damask.Rotation Examples -------- >>> import damask >>> damask.Rotation.from_matrix([[1,0,0],[0,0,-1],[0,1,0]]) Quaternion [ 0.707 -0.707 0. 0. ] """ return Rotation.from_basis(np.array(R,dtype=float) * (np.linalg.det(R)**(-1./3.))[...,np.newaxis,np.newaxis] if normalize else R)
[docs] @staticmethod def from_parallel(a: np.ndarray, b: np.ndarray, active: bool = False ) -> 'Rotation': """ Initialize from pairs of two orthogonal basis vectors. Parameters ---------- a : numpy.ndarray, shape (...,2,3) Two three-dimensional vectors of first orthogonal basis. b : numpy.ndarray, shape (...,2,3) Corresponding three-dimensional vectors of second basis. active : bool, optional Consider rotations as active, i.e. return (B^-1⋅A) instead of (B⋅A^-1). Defaults to False. Returns ------- new : damask.Rotation Notes ----- If rotations $A = [a_1,a_2,a_1 × a_2]^T$ and B = $[b_1,b_2,b_1 × b_2]^T$ are considered "active", the resulting rotation will be $B^{-1}⋅A$ instead of the default result $B⋅A^{-1}$. Examples -------- >>> import damask >>> damask.Rotation.from_parallel([[2,0,0],[0,1,0]],[[1,0,0],[0,2,0]]) Quaternion [1. 0. 0. 0.] """ a_ = np.array(a,dtype=float) b_ = np.array(b,dtype=float) if a_.shape[-2:] != (2,3) or b_.shape[-2:] != (2,3): raise ValueError(f'invalid shape: {a_.shape}/{b_.shape}') a_ /= np.linalg.norm(a_,axis=-1,keepdims=True) b_ /= np.linalg.norm(b_,axis=-1,keepdims=True) am = np.stack([ a_[...,0,:], a_[...,1,:], np.cross(a_[...,0,:],a_[...,1,:]) ],axis=-1 if active else -2) bm = np.stack([ b_[...,0,:], b_[...,1,:], np.cross(b_[...,0,:],b_[...,1,:]) ],axis=-1 if active else -2) return Rotation.from_basis(am).misorientation(Rotation.from_basis(bm))
[docs] @staticmethod def from_Rodrigues_vector(rho: np.ndarray, normalize: bool = False, P: Literal[1, -1] = -1) -> 'Rotation': """ Initialize from Rodrigues–Frank vector (with angle separated from axis). Parameters ---------- rho : numpy.ndarray, shape (...,4) Rodrigues–Frank vector (n_1, n_2, n_3, tan(ω/2)) with ǀnǀ = 1 and ω ∈ [0,π]. normalize : bool, optional Allow ǀnǀ ≠ 1. Defaults to False. P : int ∈ {-1,1}, optional Sign convention. Defaults to -1. Returns ------- new : damask.Rotation Examples -------- >>> import damask >>> damask.Rotation.from_Rodrigues_vector([0,0,1,1]) Quaternion [0.707 0. 0. 0.707] """ ro = np.array(rho,dtype=float) if ro.shape[:-2:-1] != (4,): raise ValueError(f'invalid shape: {ro}') if abs(P) != 1: raise ValueError('P ∉ {-1,1}') if P == 1: ro[...,0:3] *= -1 if np.any(ro[...,3] < 0.): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'Rodrigues vector rotation angle is negative\n{ro}') if normalize: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True) elif not np.allclose(np.linalg.norm(ro[...,0:3],axis=-1),1.): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'Rodrigues vector rotation axis is not of unit length\n{ro}') return Rotation(Rotation._ro2qu(ro))
[docs] @staticmethod def from_homochoric(h: np.ndarray, P: Literal[1, -1] = -1) -> 'Rotation': """ Initialize from homochoric vector. Parameters ---------- h : numpy.ndarray, shape (...,3) Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3π/4)^(1/3). P : int ∈ {-1,1}, optional Sign convention. Defaults to -1. Returns ------- new : damask.Rotation """ ho = np.array(h,dtype=float) if ho.shape[:-2:-1] != (3,): raise ValueError(f'invalid shape: {ho.shape}') if abs(P) != 1: raise ValueError('P ∉ {-1,1}') if P == 1: ho *= -1 if np.any(np.linalg.norm(ho,axis=-1) > _R1+1.e-9): with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'homochoric coordinate outside of the sphere\n{ho}') return Rotation(Rotation._ho2qu(ho))
[docs] @staticmethod def from_cubochoric(x: np.ndarray, P: Literal[1, -1] = -1) -> 'Rotation': """ Initialize from cubochoric vector. Parameters ---------- x : numpy.ndarray, shape (...,3) Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2 π^(2/3). P : int ∈ {-1,1}, optional Sign convention. Defaults to -1. Returns ------- new : damask.Rotation """ cu = np.array(x,dtype=float) if cu.shape[:-2:-1] != (3,): raise ValueError(f'invalid shape: {cu.shape}') if abs(P) != 1: raise ValueError('P ∉ {-1,1}') if np.abs(np.max(cu)) > np.pi**(2./3.) * 0.5+1.e-9: with np.printoptions(threshold=sys.maxsize,precision=16,floatmode='fixed'): raise ValueError(f'cubochoric coordinate outside of the cube\n{cu}') ho = -P * Rotation._cu2ho(cu) return Rotation(Rotation._ho2qu(ho))
[docs] @staticmethod def from_random(shape: Union[None, int, IntSequence] = None, rng_seed: Optional[NumpyRngSeed] = None) -> 'Rotation': """ Initialize with samples from a uniform distribution. Parameters ---------- shape : (sequence of) int, optional Output shape. Defaults to None, which gives a scalar. rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS. Returns ------- new : damask.Rotation """ rng = np.random.default_rng(rng_seed) r = rng.random(3 if shape is None else tuple(shape)+(3,) if hasattr(shape, '__iter__') else (shape,3)) # type: ignore A = np.sqrt(r[...,2]) B = np.sqrt(1.-r[...,2]) q = np.stack([np.cos(2.*np.pi*r[...,0])*A, np.sin(2.*np.pi*r[...,1])*B, np.cos(2.*np.pi*r[...,1])*B, np.sin(2.*np.pi*r[...,0])*A],axis=-1) return Rotation(q if shape is None else q.reshape(r.shape[:-1]+(4,)))._standardize()
[docs] @staticmethod def from_ODF(weights: np.ndarray, phi: np.ndarray, shape: Union[None, int, IntSequence] = None, degrees: bool = False, fractions: bool = True, rng_seed: Optional[NumpyRngSeed] = None) -> 'Rotation': """ Initialize with samples from a binned orientation distribution function (ODF). Parameters ---------- weights : numpy.ndarray, shape (n) Texture intensity values (probability density or volume fraction) at Euler space grid points. phi : numpy.ndarray, shape (n,3) Grid coordinates in Euler space at which weights are defined. shape : (sequence of) int, optional Output shape. Defaults to None, which gives a scalar. degrees : bool, optional Euler space grid coordinates are in degrees. Defaults to True. fractions : bool, optional ODF values correspond to volume fractions, not probability densities. Defaults to True. rng_seed: {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS. Returns ------- new : damask.Rotation Notes ----- Due to the distortion of Euler space in the vicinity of ϕ = 0, probability densities, p, defined on grid points with ϕ = 0 will never result in reconstructed orientations as their dV/V = p dγ = p × 0. Hence, it is recommended to transform any such dataset to a cell-centered version, which avoids grid points at ϕ = 0. References ---------- P. Eisenlohr and F. Roters, Computational Materials Science 42(4):670-678, 2008 https://doi.org/10.1016/j.commatsci.2007.09.015 """ def _dg(eu,deg): """Return infinitesimal Euler space volume of bin(s).""" phi_sorted = eu[np.lexsort((eu[:,0],eu[:,1],eu[:,2]))] steps,size,_ = grid_filters.cellsSizeOrigin_coordinates0_point(phi_sorted) delta = np.radians(size/steps) if deg else size/steps return delta[0]*2.*np.sin(delta[1]/2.)*delta[2] / 8. / np.pi**2 * np.sin(np.radians(eu[:,1]) if deg else eu[:,1]) dg = 1. if fractions else _dg(phi,degrees) dV_V = dg * np.maximum(0.,weights.squeeze()) N = 1 if shape is None else np.prod(shape).astype(int) return Rotation.from_Euler_angles(phi[util.hybrid_IA(dV_V,N,rng_seed)],degrees).reshape(() if shape is None else shape)
[docs] @staticmethod def from_spherical_component(center: 'Rotation', sigma: float, shape: Union[None, int, IntSequence] = None, degrees: bool = False, rng_seed: Optional[NumpyRngSeed] = None) -> 'Rotation': """ Initialize with samples from a Gaussian distribution around a given center. Parameters ---------- center : Rotation or Orientation Central rotation. sigma : float Standard deviation of (Gaussian) misorientation distribution. shape : (sequence of) int, optional Output shape. Defaults to None, which gives a scalar. degrees : bool, optional sigma is given in degrees. Defaults to False. rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS. Examples -------- Create a brass texture consisting of 200 orientations: >>> import damask >>> center = damask.Rotation.from_Euler_angles([35.,45.,0.],degrees=True) >>> brass = damask.Rotation.from_spherical_component(center=center,sigma=3.,shape=200,degrees=True) Create a Goss texture consisting of 100 orientations: >>> import damask >>> center = damask.Rotation.from_Euler_angles([0.,45.,0.],degrees=True) >>> goss = damask.Rotation.from_spherical_component(center=center,sigma=3.,shape=100,degrees=True) """ rng = np.random.default_rng(rng_seed) sigma = np.radians(sigma) if degrees else sigma N = 1 if shape is None else np.prod(shape) u,Theta = (rng.random((N,2)) * 2. * np.array([1.,np.pi]) - np.array([1.,0.])).T omega = abs(rng.normal(scale=sigma,size=N)) p = np.column_stack([np.sqrt(1.-u**2)*np.cos(Theta), np.sqrt(1.-u**2)*np.sin(Theta), u, omega]) return Rotation.from_axis_angle(p).reshape(() if shape is None else shape) * center
[docs] @staticmethod def from_fiber_component(crystal: IntSequence, sample: IntSequence, sigma: float = 0., shape: Union[None, int, IntSequence] = None, degrees: bool = False, rng_seed: Optional[NumpyRngSeed] = None) -> 'Rotation': """ Initialize with samples from a Gaussian distribution around a given direction. Parameters ---------- crystal : numpy.ndarray, shape (2) Polar coordinates (polar angle θ from [0 0 1], azimuthal angle φ from [1 0 0]) of fiber direction in crystal frame. sample : numpy.ndarray, shape (2) Polar coordinates (polar angle θ from z, azimuthal angle φ from x) of fiber direction in sample frame. sigma : float, optional Standard deviation of (Gaussian) misorientation distribution. Defaults to 0. shape : (sequence of) int, optional Output shape. Defaults to None, which gives a scalar. degrees : bool, optional sigma and polar coordinates are given in degrees. Defaults to False. rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS. Returns ------- new : damask.Rotation Notes ----- The crystal direction for (θ=0,φ=0) is [0 0 1], the sample direction for (θ=0,φ=0) is z. Polar coordinates follow the ISO 80000-2:2019 convention typically used in physics. See https://en.wikipedia.org/wiki/Spherical_coordinate_system. Ranges 0≤θ≤π and 0≤φ≤2π give a unique set of coordinates. Examples -------- Create an ideal α-fiber texture (<1 1 0> ǀǀ RD=x) consisting of 200 orientations: >>> import damask >>> import numpy as np >>> alpha = damask.Rotation.from_fiber_component([np.pi/4.,0.],[np.pi/2.,0.],shape=200) Create an ideal γ-fiber texture (<1 1 1> ǀǀ ND=z) consisting of 100 orientations: >>> import damask >>> gamma = damask.Rotation.from_fiber_component([54.7,45.],[0.,0.],shape=100,degrees=True) """ rng = np.random.default_rng(rng_seed) sigma_,alpha,beta = (np.radians(coordinate) for coordinate in (sigma,crystal,sample)) if degrees else \ map(np.array, (sigma,crystal,sample)) d_cr = np.array([np.sin(alpha[0])*np.cos(alpha[1]), np.sin(alpha[0])*np.sin(alpha[1]), np.cos(alpha[0])]) d_lab = np.array([np.sin( beta[0])*np.cos( beta[1]), np.sin( beta[0])*np.sin( beta[1]), np.cos( beta[0])]) ax_align = np.append(np.cross(d_lab,d_cr), np.arccos(np.dot(d_lab,d_cr))) if np.isclose(ax_align[3],0.): ax_align[:3] = np.array([1.,0.,0.]) R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0. else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame N = 1 if shape is None else np.prod(shape).astype(int) u,Theta = (rng.random((N,2)) * 2. * np.array([1.,np.pi]) - np.array([1.,0.])).T omega = abs(rng.normal(scale=sigma_,size=N)) p = np.column_stack([np.sqrt(1.-u**2)*np.cos(Theta), np.sqrt(1.-u**2)*np.sin(Theta), u, omega]) p[:,:3] = np.einsum('ij,...j',np.eye(3)-np.outer(d_lab,d_lab),p[:,:3]) # remove component along fiber axis f = np.column_stack((np.broadcast_to(d_lab,(N,3)),rng.random(N)*np.pi)) f[::2,:3] *= -1. # flip half the rotation axes to negative sense return (R_align.broadcast_to(N) * Rotation.from_axis_angle(p,normalize=True) * Rotation.from_axis_angle(f)).reshape(() if shape is None else shape)
#################################################################################################### # Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations #################################################################################################### # Copyright (c) 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH # Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are # permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, this list # of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # - Neither the names of Marc De Graef, Carnegie Mellon University nor the names # of its contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #################################################################################################### #---------- Quaternion ---------- @staticmethod def _qu2om(qu: np.ndarray) -> np.ndarray: qq = qu[...,0:1]**2-(qu[...,1:2]**2 + qu[...,2:3]**2 + qu[...,3:4]**2) om = np.block([qq + 2.*qu[...,1:2]**2, 2.*(qu[...,2:3]*qu[...,1:2]-_P*qu[...,0:1]*qu[...,3:4]), 2.*(qu[...,3:4]*qu[...,1:2]+_P*qu[...,0:1]*qu[...,2:3]), 2.*(qu[...,1:2]*qu[...,2:3]+_P*qu[...,0:1]*qu[...,3:4]), qq + 2.*qu[...,2:3]**2, 2.*(qu[...,3:4]*qu[...,2:3]-_P*qu[...,0:1]*qu[...,1:2]), 2.*(qu[...,1:2]*qu[...,3:4]-_P*qu[...,0:1]*qu[...,2:3]), 2.*(qu[...,2:3]*qu[...,3:4]+_P*qu[...,0:1]*qu[...,1:2]), qq + 2.*qu[...,3:4]**2, ]).reshape(qu.shape[:-1]+(3,3)) return om @staticmethod def _qu2eu(qu: np.ndarray) -> np.ndarray: """ Quaternion to Bunge Euler angles. References ---------- E. Bernardes and S. Viollet, PLoS ONE 17(11):e0276302, 2022 https://doi.org/10.1371/journal.pone.0276302 """ a = qu[...,0:1] b = -_P*qu[...,3:4] c = -_P*qu[...,1:2] d = -_P*qu[...,2:3] eu = np.block([ np.arctan2(b,a), np.arccos(2*(a**2+b**2)/(a**2+b**2+c**2+d**2)-1), np.arctan2(-d,c), ]) eu_sum = eu[...,0] + eu[...,2] eu_diff = eu[...,0] - eu[...,2] is_zero = np.isclose(eu[...,1],0.0) is_pi = np.isclose(eu[...,1],np.pi) is_ok = ~np.logical_or(is_zero,is_pi) eu[...,0][is_zero] = 2*eu[...,0][is_zero] eu[...,0][is_pi] = -2*eu[...,2][is_pi] eu[...,2][~is_ok] = 0.0 eu[...,0][is_ok] = eu_diff[is_ok] eu[...,2][is_ok] = eu_sum [is_ok] eu[np.logical_or(np.abs(eu) < 1.e-6, np.abs(eu-2*np.pi) < 1.e-6)] = 0. return np.where(eu < 0., eu%(np.pi*np.array([2.,1.,2.])),eu) @staticmethod def _qu2ax(qu: np.ndarray) -> np.ndarray: """ Quaternion to axis–angle pair. Modified version of the original formulation, should be numerically more stable. """ with np.errstate(invalid='ignore',divide='ignore'): s = np.sign(qu[...,0:1])/np.sqrt(qu[...,1:2]**2+qu[...,2:3]**2+qu[...,3:4]**2) omega = 2. * np.arccos(np.clip(qu[...,0:1],-1.,1.)) ax = np.where(np.broadcast_to(qu[...,0:1] < 1.e-8,qu.shape), np.block([qu[...,1:4],np.broadcast_to(np.pi,qu[...,0:1].shape)]), np.block([qu[...,1:4]*s,omega])) ax[np.isclose(qu[...,0],1.,rtol=0.)] = np.array([0.,0.,1.,0.]) return ax @staticmethod def _qu2ro(qu: np.ndarray) -> np.ndarray: """Quaternion to Rodrigues–Frank vector.""" with np.errstate(invalid='ignore',divide='ignore'): s = np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True) ro = np.where(np.broadcast_to(np.abs(qu[...,0:1]) < 1.e-12,qu.shape), np.block([qu[...,1:2], qu[...,2:3], qu[...,3:4], np.broadcast_to(np.inf,qu[...,0:1].shape)]), np.block([qu[...,1:2]/s,qu[...,2:3]/s,qu[...,3:4]/s, np.tan(np.arccos(np.clip(qu[...,0:1],-1.,1.))) ]) ) ro[np.abs(s).squeeze(-1) < 1.e-12] = np.array([0.,0.,_P,0.]) return ro @staticmethod def _qu2ho(qu: np.ndarray) -> np.ndarray: """Quaternion to homochoric vector.""" with np.errstate(invalid='ignore'): omega = 2. * np.arccos(np.clip(qu[...,0:1],-1.,1.)) ho = np.where(np.abs(omega) < 1.e-12, np.zeros(3), qu[...,1:4]/np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True) * (0.75*(omega - np.sin(omega)))**(1./3.)) return ho @staticmethod def _qu2cu(qu: np.ndarray) -> np.ndarray: """Quaternion to cubochoric vector.""" return Rotation._ho2cu(Rotation._qu2ho(qu)) #---------- Rotation matrix ---------- @staticmethod def _om2qu(om: np.ndarray) -> np.ndarray: """ Rotation matrix to quaternion. This formulation is from www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion. The original formulation had issues. """ trace = om[...,0,0:1] + om[...,1,1:2] + om[...,2,2:3] with np.errstate(invalid='ignore',divide='ignore'): s = np.array([ 0.5 / np.sqrt( 1. + trace), 2. * np.sqrt( 1. + om[...,0,0:1] - om[...,1,1:2] - om[...,2,2:3]), 2. * np.sqrt( 1. + om[...,1,1:2] - om[...,2,2:3] - om[...,0,0:1]), 2. * np.sqrt( 1. + om[...,2,2:3] - om[...,0,0:1] - om[...,1,1:2] ) ]) qu = np.where(trace>0, np.block([0.25 / s[0], (om[...,2,1:2] - om[...,1,2:3] ) * s[0], (om[...,0,2:3] - om[...,2,0:1] ) * s[0], (om[...,1,0:1] - om[...,0,1:2] ) * s[0]]), np.where(om[...,0,0:1] > np.maximum(om[...,1,1:2],om[...,2,2:3]), np.block([(om[...,2,1:2] - om[...,1,2:3]) / s[1], 0.25 * s[1], (om[...,0,1:2] + om[...,1,0:1]) / s[1], (om[...,0,2:3] + om[...,2,0:1]) / s[1]]), np.where(om[...,1,1:2] > om[...,2,2:3], np.block([(om[...,0,2:3] - om[...,2,0:1]) / s[2], (om[...,0,1:2] + om[...,1,0:1]) / s[2], 0.25 * s[2], (om[...,1,2:3] + om[...,2,1:2]) / s[2]]), np.block([(om[...,1,0:1] - om[...,0,1:2]) / s[3], (om[...,0,2:3] + om[...,2,0:1]) / s[3], (om[...,1,2:3] + om[...,2,1:2]) / s[3], 0.25 * s[3]]), ) ) )*np.array([1.,_P,_P,_P]) qu[qu[...,0] < 0.] *= -1. return qu @staticmethod def _om2eu(om: np.ndarray) -> np.ndarray: """Rotation matrix to Bunge Euler angles.""" with np.errstate(invalid='ignore',divide='ignore'): zeta = 1./np.sqrt(1.-om[...,2,2:3]**2) eu = np.where(np.isclose(np.abs(om[...,2,2:3]),1.,0.), np.block([np.arctan2(om[...,0,1:2],om[...,0,0:1]), np.pi*0.5*(1.-om[...,2,2:3]), np.zeros(om.shape[:-2]+(1,)), ]), np.block([np.arctan2(om[...,2,0:1]*zeta,-om[...,2,1:2]*zeta), np.arccos( om[...,2,2:3]), np.arctan2(om[...,0,2:3]*zeta,+om[...,1,2:3]*zeta) ]) ) eu[np.abs(eu) < 1.e-8] = 0.0 return np.where(eu < 0., eu%(np.pi*np.array([2.,1.,2.])),eu) @staticmethod def _om2ax(om: np.ndarray) -> np.ndarray: """Rotation matrix to axis–angle pair.""" diag_delta = -_P*np.block([om[...,1,2:3]-om[...,2,1:2], om[...,2,0:1]-om[...,0,2:3], om[...,0,1:2]-om[...,1,0:1] ]) t = 0.5*(om.trace(axis2=-2,axis1=-1) -1.).reshape(om.shape[:-2]+(1,)) w,vr = np.linalg.eig(om) # mask duplicated real eigenvalues w[np.isclose(w[...,0],1.+0.j),1:] = 0. w[np.isclose(w[...,1],1.+0.j),2:] = 0. vr = np.swapaxes(vr,-1,-2) ax = np.where(np.abs(diag_delta)<1.e-13, np.real(vr[np.isclose(w,1.+0.j)]).reshape(om.shape[:-2]+(3,)), np.abs(np.real(vr[np.isclose(w,1.+0.j)]).reshape(om.shape[:-2]+(3,))) *np.sign(diag_delta)) ax = np.block([ax,np.arccos(np.clip(t,-1.,1.))]) ax[np.abs(ax[...,3]) < 1.e-8] = np.array([0.,0.,1.,0.]) return ax @staticmethod def _om2ro(om: np.ndarray) -> np.ndarray: """Rotation matrix to Rodrigues–Frank vector.""" return Rotation._eu2ro(Rotation._om2eu(om)) @staticmethod def _om2ho(om: np.ndarray) -> np.ndarray: """Rotation matrix to homochoric vector.""" return Rotation._ax2ho(Rotation._om2ax(om)) @staticmethod def _om2cu(om: np.ndarray) -> np.ndarray: """Rotation matrix to cubochoric vector.""" return Rotation._ho2cu(Rotation._om2ho(om)) #---------- Bunge Euler angles ---------- @staticmethod def _eu2qu(eu: np.ndarray) -> np.ndarray: """Bunge Euler angles to quaternion.""" ee = 0.5*eu cPhi = np.cos(ee[...,1:2]) sPhi = np.sin(ee[...,1:2]) qu = np.block([ cPhi*np.cos(ee[...,0:1]+ee[...,2:3]), -_P*sPhi*np.cos(ee[...,0:1]-ee[...,2:3]), -_P*sPhi*np.sin(ee[...,0:1]-ee[...,2:3]), -_P*cPhi*np.sin(ee[...,0:1]+ee[...,2:3])]) qu[qu[...,0] < 0.] *= -1. return qu @staticmethod def _eu2om(eu: np.ndarray) -> np.ndarray: """Bunge Euler angles to rotation matrix.""" c = np.cos(eu) s = np.sin(eu) om = np.block([+c[...,0:1]*c[...,2:3]-s[...,0:1]*s[...,2:3]*c[...,1:2], +s[...,0:1]*c[...,2:3]+c[...,0:1]*s[...,2:3]*c[...,1:2], +s[...,2:3]*s[...,1:2], -c[...,0:1]*s[...,2:3]-s[...,0:1]*c[...,2:3]*c[...,1:2], -s[...,0:1]*s[...,2:3]+c[...,0:1]*c[...,2:3]*c[...,1:2], +c[...,2:3]*s[...,1:2], +s[...,0:1]*s[...,1:2], -c[...,0:1]*s[...,1:2], +c[...,1:2] ]).reshape(eu.shape[:-1]+(3,3)) om[np.abs(om) < 1.e-12] = 0. return om @staticmethod def _eu2ax(eu: np.ndarray) -> np.ndarray: """Bunge Euler angles to axis–angle pair.""" t = np.tan(eu[...,1:2]*0.5) sigma = 0.5*(eu[...,0:1]+eu[...,2:3]) delta = 0.5*(eu[...,0:1]-eu[...,2:3]) tau = np.linalg.norm(np.block([t,np.sin(sigma)]),axis=-1,keepdims=True) alpha = np.where(np.abs(np.cos(sigma))<1.e-12,np.pi,2.*np.arctan(tau/np.cos(sigma))) with np.errstate(invalid='ignore',divide='ignore'): ax = np.where(np.broadcast_to(np.abs(alpha)<1.e-12,eu.shape[:-1]+(4,)), [0.,0.,1.,0.], np.block([-_P/tau*t*np.cos(delta), -_P/tau*t*np.sin(delta), -_P/tau* np.sin(sigma), alpha ])) ax[(alpha<0.).squeeze()] *= -1. return ax @staticmethod def _eu2ro(eu: np.ndarray) -> np.ndarray: """Bunge Euler angles to Rodrigues–Frank vector.""" ax = Rotation._eu2ax(eu) ro = np.block([ax[...,:3],np.tan(ax[...,3:4]*.5)]) ro[ax[...,3] >= np.pi,3] = np.inf ro[np.abs(ax[...,3])<1.e-16] = np.array([0.,0.,_P,0.]) return ro @staticmethod def _eu2ho(eu: np.ndarray) -> np.ndarray: """Bunge Euler angles to homochoric vector.""" return Rotation._ax2ho(Rotation._eu2ax(eu)) @staticmethod def _eu2cu(eu: np.ndarray) -> np.ndarray: """Bunge Euler angles to cubochoric vector.""" return Rotation._ho2cu(Rotation._eu2ho(eu)) #---------- Axis angle pair ---------- @staticmethod def _ax2qu(ax: np.ndarray) -> np.ndarray: """Axis–angle pair to quaternion.""" c = np.cos(ax[...,3:4]*.5) s = np.sin(ax[...,3:4]*.5) qu = np.where(np.abs(ax[...,3:4]) < 1.e-6,[1.,0.,0.,0.],np.block([c,ax[...,:3]*s])) return qu @staticmethod def _ax2om(ax: np.ndarray) -> np.ndarray: """Axis-angle pair to rotation matrix.""" c = np.cos(ax[...,3:4]) s = np.sin(ax[...,3:4]) omc = 1.-c om = np.block([c+omc*ax[...,0:1]**2, omc*ax[...,0:1]*ax[...,1:2] + s*ax[...,2:3], omc*ax[...,0:1]*ax[...,2:3] - s*ax[...,1:2], omc*ax[...,0:1]*ax[...,1:2] - s*ax[...,2:3], c+omc*ax[...,1:2]**2, omc*ax[...,1:2]*ax[...,2:3] + s*ax[...,0:1], omc*ax[...,0:1]*ax[...,2:3] + s*ax[...,1:2], omc*ax[...,1:2]*ax[...,2:3] - s*ax[...,0:1], c+omc*ax[...,2:3]**2]).reshape(ax.shape[:-1]+(3,3)) return om if _P < 0. else np.swapaxes(om,-1,-2) @staticmethod def _ax2eu(ax: np.ndarray) -> np.ndarray: """Rotation matrix to Bunge Euler angles.""" return Rotation._om2eu(Rotation._ax2om(ax)) @staticmethod def _ax2ro(ax: np.ndarray) -> np.ndarray: """Axis–angle pair to Rodrigues–Frank vector.""" ro = np.block([ax[...,:3], np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0), np.inf, np.tan(ax[...,3:4]*0.5)) ]) ro[np.abs(ax[...,3]) < 1.e-6] = np.array([.0,.0,_P,.0]) return ro @staticmethod def _ax2ho(ax: np.ndarray) -> np.ndarray: """Axis–angle pair to homochoric vector.""" f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1./3.) return ax[...,:3] * f @staticmethod def _ax2cu(ax: np.ndarray) -> np.ndarray: """Axis–angle pair to cubochoric vector.""" return Rotation._ho2cu(Rotation._ax2ho(ax)) #---------- Rodrigues-Frank vector ---------- @staticmethod def _ro2qu(ro: np.ndarray) -> np.ndarray: """Rodrigues–Frank vector to quaternion.""" return Rotation._ax2qu(Rotation._ro2ax(ro)) @staticmethod def _ro2om(ro: np.ndarray) -> np.ndarray: """Rodgrigues–Frank vector to rotation matrix.""" return Rotation._ax2om(Rotation._ro2ax(ro)) @staticmethod def _ro2eu(ro: np.ndarray) -> np.ndarray: """Rodrigues–Frank vector to Bunge Euler angles.""" return Rotation._om2eu(Rotation._ro2om(ro)) @staticmethod def _ro2ax(ro: np.ndarray) -> np.ndarray: """Rodrigues–Frank vector to axis–angle pair.""" with np.errstate(invalid='ignore',divide='ignore'): ax = np.where(np.isfinite(ro[...,3:4]), np.block([ro[...,0:3]*np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True),2.*np.arctan(ro[...,3:4])]), np.block([ro[...,0:3],np.broadcast_to(np.pi,ro[...,3:4].shape)])) ax[np.abs(ro[...,3]) < 1.e-8] = np.array([0.,0.,1.,0.]) return ax @staticmethod def _ro2ho(ro: np.ndarray) -> np.ndarray: """Rodrigues–Frank vector to homochoric vector.""" f = np.where(np.isfinite(ro[...,3:4]),2.*np.arctan(ro[...,3:4]) -np.sin(2.*np.arctan(ro[...,3:4])),np.pi) return np.where(np.broadcast_to(np.sum(ro[...,0:3]**2,axis=-1,keepdims=True) < 1.e-8,ro[...,0:3].shape), np.zeros(3), ro[...,0:3]* (0.75*f)**(1./3.)) @staticmethod def _ro2cu(ro: np.ndarray) -> np.ndarray: """Rodrigues–Frank vector to cubochoric vector.""" return Rotation._ho2cu(Rotation._ro2ho(ro)) #---------- Homochoric vector---------- @staticmethod def _ho2qu(ho: np.ndarray) -> np.ndarray: """Homochoric vector to quaternion.""" return Rotation._ax2qu(Rotation._ho2ax(ho)) @staticmethod def _ho2om(ho: np.ndarray) -> np.ndarray: """Homochoric vector to rotation matrix.""" return Rotation._ax2om(Rotation._ho2ax(ho)) @staticmethod def _ho2eu(ho: np.ndarray) -> np.ndarray: """Homochoric vector to Bunge Euler angles.""" return Rotation._ax2eu(Rotation._ho2ax(ho)) @staticmethod def _ho2ax(ho: np.ndarray) -> np.ndarray: """Homochoric vector to axis–angle pair.""" tfit = np.array([+0.9999999999999968, -0.49999999999986866, -0.025000000000632055, -0.003928571496460683, -0.0008164666077062752, -0.00019411896443261646, -0.00004985822229871769, -0.000014164962366386031, -1.9000248160936107e-6, -5.72184549898506e-6, +7.772149920658778e-6, -0.00001053483452909705, +9.528014229335313e-6, -5.660288876265125e-6, +1.2844901692764126e-6, +1.1255185726258763e-6, -1.3834391419956455e-6, +7.513691751164847e-7, -2.401996891720091e-7, +4.386887017466388e-8, -3.5917775353564864e-9]) hmag_squared = np.sum(ho**2,axis=-1,keepdims=True) s = np.sum(tfit*hmag_squared**np.arange(len(tfit)),axis=-1,keepdims=True) with np.errstate(invalid='ignore'): return np.where(np.broadcast_to(np.abs(hmag_squared)<1.e-8,ho.shape[:-1]+(4,)), [0.,0.,1.,0.], np.block([ho/np.sqrt(hmag_squared),2.*np.arccos(np.clip(s,-1.,1.))])) @staticmethod def _ho2ro(ho: np.ndarray) -> np.ndarray: """Axis–angle pair to Rodrigues–Frank vector.""" return Rotation._ax2ro(Rotation._ho2ax(ho)) @staticmethod def _ho2cu(ho: np.ndarray) -> np.ndarray: """ Homochoric vector to cubochoric vector. References ---------- D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014 https://doi.org/10.1088/0965-0393/22/7/075013 """ rs = np.linalg.norm(ho,axis=-1,keepdims=True) xyz3 = np.take_along_axis(ho,Rotation._get_pyramid_order(ho,'forward'),-1) with np.errstate(invalid='ignore',divide='ignore'): # inverse M_3 xyz2 = xyz3[...,0:2] * np.sqrt( 2.*rs/(rs+np.abs(xyz3[...,2:3])) ) qxy = np.sum(xyz2**2,axis=-1,keepdims=True) q2 = qxy + np.max(np.abs(xyz2),axis=-1,keepdims=True)**2 sq2 = np.sqrt(q2) q = (_beta/np.sqrt(2.)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2)) tt = np.clip((np.min(np.abs(xyz2),axis=-1,keepdims=True)**2\ +np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2)/np.sqrt(2.)/qxy,-1.,1.) T_inv = np.where(np.abs(xyz2[...,1:2]) <= np.abs(xyz2[...,0:1]), np.block([np.ones_like(tt),np.arccos(tt)/np.pi*12.]), np.block([np.arccos(tt)/np.pi*12.,np.ones_like(tt)]))*q T_inv[xyz2<0.] *= -1. T_inv[np.broadcast_to(np.isclose(qxy,0.,rtol=0.,atol=1.e-12),T_inv.shape)] = 0. cu = np.block([T_inv, np.where(xyz3[...,2:3]<0.,-np.ones_like(xyz3[...,2:3]),np.ones_like(xyz3[...,2:3])) \ * rs/np.sqrt(6./np.pi), ])/ _sc cu[np.isclose(np.sum(np.abs(ho),axis=-1),0.,rtol=0.,atol=1.e-16)] = 0. return np.take_along_axis(cu,Rotation._get_pyramid_order(ho,'backward'),-1) #---------- Cubochoric ---------- @staticmethod def _cu2qu(cu: np.ndarray) -> np.ndarray: """Cubochoric vector to quaternion.""" return Rotation._ho2qu(Rotation._cu2ho(cu)) @staticmethod def _cu2om(cu: np.ndarray) -> np.ndarray: """Cubochoric vector to rotation matrix.""" return Rotation._ho2om(Rotation._cu2ho(cu)) @staticmethod def _cu2eu(cu: np.ndarray) -> np.ndarray: """Cubochoric vector to Bunge Euler angles.""" return Rotation._ho2eu(Rotation._cu2ho(cu)) @staticmethod def _cu2ax(cu: np.ndarray) -> np.ndarray: """Cubochoric vector to axis–angle pair.""" return Rotation._ho2ax(Rotation._cu2ho(cu)) @staticmethod def _cu2ro(cu: np.ndarray) -> np.ndarray: """Cubochoric vector to Rodrigues–Frank vector.""" return Rotation._ho2ro(Rotation._cu2ho(cu)) @staticmethod def _cu2ho(cu: np.ndarray) -> np.ndarray: """ Cubochoric vector to homochoric vector. References ---------- D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014 https://doi.org/10.1088/0965-0393/22/7/075013 """ with np.errstate(invalid='ignore',divide='ignore'): # get pyramid and scale by grid parameter ratio XYZ = np.take_along_axis(cu,Rotation._get_pyramid_order(cu,'forward'),-1) * _sc order = np.abs(XYZ[...,1:2]) <= np.abs(XYZ[...,0:1]) q = np.pi/12. * np.where(order,XYZ[...,1:2],XYZ[...,0:1]) \ / np.where(order,XYZ[...,0:1],XYZ[...,1:2]) c = np.cos(q) s = np.sin(q) q = _R1*2.**0.25/_beta/ np.sqrt(np.sqrt(2.)-c) \ * np.where(order,XYZ[...,0:1],XYZ[...,1:2]) T = np.block([(np.sqrt(2.)*c - 1.), np.sqrt(2.) * s]) * q # transform to sphere grid (inverse Lambert) c = np.sum(T**2,axis=-1,keepdims=True) s = c * np.pi/24. /XYZ[...,2:3]**2 c = c * np.sqrt(np.pi/24.)/XYZ[...,2:3] q = np.sqrt( 1. - s) ho = np.where(np.isclose(np.sum(np.abs(XYZ[...,0:2]),axis=-1,keepdims=True),0.,rtol=0.,atol=1.e-16), np.block([np.zeros_like(XYZ[...,0:2]),np.sqrt(6./np.pi)*XYZ[...,2:3]]), np.block([np.where(order,T[...,0:1],T[...,1:2])*q, np.where(order,T[...,1:2],T[...,0:1])*q, np.sqrt(6./np.pi) * XYZ[...,2:3] - c]) ) ho[np.isclose(np.sum(np.abs(cu),axis=-1),0.,rtol=0.,atol=1.e-16)] = 0. return np.take_along_axis(ho,Rotation._get_pyramid_order(cu,'backward'),-1) @staticmethod def _get_pyramid_order(xyz: np.ndarray, direction: Literal['forward', 'backward']) -> np.ndarray: """ Get order of the coordinates. Depending on the pyramid in which the point is located, the order need to be adjusted. Parameters ---------- xyz : numpy.ndarray Coordinates of a point on a uniform refinable grid on a ball or in a uniform refinable cubical grid. References ---------- D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014 https://doi.org/10.1088/0965-0393/22/7/075013 """ order = {'forward': np.array([[0,1,2],[1,2,0],[2,0,1]]), 'backward':np.array([[0,1,2],[2,0,1],[1,2,0]])} p = np.where(np.maximum(np.abs(xyz[...,0]),np.abs(xyz[...,1])) <= np.abs(xyz[...,2]),0, np.where(np.maximum(np.abs(xyz[...,1]),np.abs(xyz[...,2])) <= np.abs(xyz[...,0]),1,2)) return order[direction][p]