Pre-Processing#

The following classes and modules support the setup of DAMASK simulations.

YAML#

class damask.YAML(config=None, **kwargs)[source]#

YAML-based configuration.

Attributes:
is_complete

Check for completeness.

is_valid

Check for valid file layout.

Methods

clear()

copy()

Return deepcopy(self).

delete(keys)

Remove configuration keys.

fromkeys(iterable[, value])

Create a new dictionary with keys from iterable and values set to value.

get(key[, default])

Return the value for key if key is in the dictionary, else default.

items()

keys()

load(fname)

Load from YAML file.

pop(key[, default])

If key is not found, default is returned if given, otherwise KeyError is raised

popitem(/)

Remove and return a (key, value) pair as a 2-tuple.

save(fname, **kwargs)

Save to YAML file.

setdefault(key[, default])

Insert key with a value of default if key is not in the dictionary.

update([E, ]**F)

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

copy()#

Return deepcopy(self).

Create deep copy.

delete(keys)[source]#

Remove configuration keys.

Parameters:
keysiterable or scalar

Label of the key(s) to remove.

Returns:
updateddamask.YAML

Updated configuration.

classmethod load(fname)[source]#

Load from YAML file.

Parameters:
fnamefile, str, or pathlib.Path

Filename or file to read.

Returns:
loadeddamask.YAML

YAML from file.

save(fname, **kwargs)[source]#

Save to YAML file.

Parameters:
fnamefile, str, or pathlib.Path

Filename or file to write.

**kwargsdict

Keyword arguments parsed to yaml.dump.

abstract property is_complete#

Check for completeness.

abstract property is_valid#

Check for valid file layout.

clear() None.  Remove all items from D.#
fromkeys(iterable, value=None, /)#

Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)#

Return the value for key if key is in the dictionary, else default.

items() a set-like object providing a view on D's items#
keys() a set-like object providing a view on D's keys#
pop(key, default=<unrepresentable>, /)#

If key is not found, default is returned if given, otherwise KeyError is raised

popitem(/)#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E, ]**F) None.  Update D from dict/iterable E and F.#

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values() an object providing a view on D's values#

ConfigMaterial#

class damask.ConfigMaterial(config=None, *, homogenization=None, phase=None, material=None)[source]#

Material configuration.

Manipulate material configurations for storage in YAML format. A complete material configuration file has the entries ‘material’, ‘phase’, and ‘homogenization’.

Attributes:
is_complete

Check for completeness.

is_valid

Check for valid content.

Methods

clear()

copy()

Return deepcopy(self).

delete(keys)

Remove configuration keys.

from_table(table, *[, homogenization, ...])

Generate from an ASCII table.

fromkeys(iterable[, value])

Create a new dictionary with keys from iterable and values set to value.

get(key[, default])

Return the value for key if key is in the dictionary, else default.

items()

keys()

load(fname)

Load from YAML file.

load_DREAM3D(fname[, grain_data, cell_data, ...])

Load DREAM.3D (HDF5) file.

material_add(*[, homogenization, phase, v, ...])

Add material entries.

material_rename_homogenization(mapping[, ID])

Change homogenization name in material.

material_rename_phase(mapping[, ID, constituent])

Change phase name in material.

pop(key[, default])

If key is not found, default is returned if given, otherwise KeyError is raised

popitem(/)

Remove and return a (key, value) pair as a 2-tuple.

save(fname, **kwargs)

Save to YAML file.

setdefault(key[, default])

Insert key with a value of default if key is not in the dictionary.

update([E, ]**F)

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

static load_DREAM3D(fname, grain_data=None, cell_data=None, cell_ensemble_data='CellEnsembleData', phases='Phases', Euler_angles='EulerAngles', phase_names='PhaseName', base_group=None)[source]#

Load DREAM.3D (HDF5) file.

Data in DREAM.3D files can be stored per cell (‘CellData’) and/or per grain (‘Grain Data’). Per default, i.e. if ‘grain_data’ is None, cell-wise data is assumed.

Parameters:
fnamestr or pathlib.Path

Filename of the DREAM.3D (HDF5) file.

grain_datastr

Name of the group (folder) containing grain-wise data. Defaults to None, in which case cell-wise data is used.

cell_datastr

Name of the group (folder) containing cell-wise data. Defaults to None in wich case it is automatically detected.

cell_ensemble_datastr

Name of the group (folder) containing data of cell ensembles. This group is used to inquire the name of the phases. Phases will get numeric IDs if this group is not found. Defaults to ‘CellEnsembleData’.

phasesstr

Name of the dataset containing the phase ID (cell-wise or grain-wise). Defaults to ‘Phases’.

Euler_anglesstr

Name of the dataset containing the crystallographic orientation as Euler angles in radians (cell-wise or grain-wise). Defaults to ‘EulerAngles’.

phase_namesstr

Name of the dataset containing the phase names. Phases will get numeric IDs if this dataset is not found. Defaults to ‘PhaseName’.

base_groupstr

Path to the group (folder) that contains geometry (_SIMPL_GEOMETRY), and grain- or cell-wise data. Defaults to None, in which case it is set as the path that contains _SIMPL_GEOMETRY/SPACING.

Returns:
loadeddamask.ConfigMaterial

Material configuration from file.

Notes

A grain-wise material configuration is based on segmented data from the DREAM.3D file. This data is typically available when the microstructure was synthetically created. In cell-wise representations, cells having the same orientation and phase are grouped. Since synthetically created microstructures have typically no in-grain scatter, cell-wise grids can appear to be segmented.

damask.GeomGrid.load_DREAM3D creates the corresponding grid-based geometry definition. Since the numbering of materials in cell-wise and grain-wise grids is different, it is imperative to use the same mode for both load_DREAM3D functions. That means, if the “grain_data” argument is used for this function, the correct grid configuration is only obtained if the “feature_IDs” argument is used when calling damask.GeomGrid.load_DREAM3D.

Homogenization and phase entries are emtpy and need to be defined separately.

static from_table(table, *, homogenization=None, phase=None, v=None, O=None, V_e=None)[source]#

Generate from an ASCII table.

Parameters:
tabledamask.Table

Table that contains material information.

homogenization: (array-like) of str, optional

Homogenization label.

phase: (array-like) of str, optional

Phase label (per constituent).

v: (array-like) of float or str, optional

Constituent volume fraction (per constituent). Defaults to 1/N_constituent.

O: (array-like) of damask.Rotation or np.array/list of shape(4) or str, optional

Orientation as unit quaternion (per constituent).

V_e: (array-like) of np.array/list of shape(3,3) or str, optional

Left elastic stretch (per constituent).

Returns:
newdamask.ConfigMaterial

Material configuration from values in table.

Notes

If the value of an argument is a string that is a column label, data from the table is used to fill the corresponding entry in the material configuration. Otherwise, the value is used directly.

First index of array-like values that are defined per constituent runs over materials, whereas second index runs over constituents.

Examples

>>> import damask
>>> from damask import ConfigMaterial as cm
>>> t = damask.Table.load('small.txt')
>>> t
    3:pos  pos  pos  4:qu   qu   qu   qu     phase homog
 0      0    0    0   1.0  0.0  0.0  0.0  Aluminum    SX
 1      1    0    0   0.0  1.0  0.0  0.0     Steel    SX
 2      1    1    0   0.0  1.0  0.0  0.0     Steel    SX
>>> cm.from_table(t,O='qu',phase='phase',homogenization='homog')
homogenization: {SX: null}
phase: {Aluminum: null, Steel: null}
material:
- constituents:
  - phase: Aluminum
    O: [1.0, 0.0, 0.0, 0.0]
    v: 1.0
  homogenization: SX
- constituents:
  - phase: Steel
    O: [0.0, 1.0, 0.0, 0.0]
    v: 1.0
  homogenization: SX
>>> cm.from_table(t,O='qu',phase='phase',homogenization='single_crystal')
homogenization: {single_crystal: null}
phase: {Aluminum: null, Steel: null}
material:
- constituents:
  - phase: Aluminum
    O: [1.0, 0.0, 0.0, 0.0]
    v: 1.0
  homogenization: single_crystal
- constituents:
  - phase: Steel
    O: [0.0, 1.0, 0.0, 0.0]
    v: 1.0
  homogenization: single_crystal
property is_complete#

Check for completeness.

Only the general file layout is considered. This check does not consider whether specific parameters for a particular phase/homogenization model are missing.

Returns:
completebool

Whether the material.yaml definition is complete.

property is_valid#

Check for valid content.

Only the generic file content is considered. This check does not consider whether parameters for a particular phase/homogenization mode are out of bounds.

Returns:
validbool

Whether the material.yaml definition is valid.

material_rename_phase(mapping, ID=None, constituent=None)[source]#

Change phase name in material.

Parameters:
mapping: dict

Mapping from old name to new name

ID: list of ints, optional

Limit renaming to selected material IDs.

constituent: list of ints, optional

Limit renaming to selected constituents.

Returns:
updateddamask.ConfigMaterial

Updated material configuration.

material_rename_homogenization(mapping, ID=None)[source]#

Change homogenization name in material.

Parameters:
mapping: dict

Mapping from old name to new name

ID: list of ints, optional

Limit renaming to selected homogenization IDs.

Returns:
updateddamask.ConfigMaterial

Updated material configuration.

material_add(*, homogenization=None, phase=None, v=None, O=None, V_e=None)[source]#

Add material entries.

Parameters:
homogenization: (array-like) of str, optional

Homogenization label.

phase: (array-like) of str, optional

Phase label (per constituent).

v: (array-like) of float, optional

Constituent volume fraction (per constituent). Defaults to 1/N_constituent.

O: (array-like) of damask.Rotation or np.array/list of shape(4), optional

Orientation as unit quaternion (per constituent).

V_e: (array-like) of np.array/list of shape(3,3), optional

Left elastic stretch (per constituent).

Returns:
updateddamask.ConfigMaterial

Updated material configuration.

Notes

First index of array-like values that are defined per constituent runs over materials, whereas second index runs over constituents.

Examples

Create two grains of ferrite and one grain of martensite, each with random orientation:

>>> import damask
>>> m = damask.ConfigMaterial()
>>> m = m.material_add(phase = ['Ferrite','Martensite','Ferrite'],
...                    O = damask.Rotation.from_random(3,rng_seed=20191102),
...                    homogenization = 'SX')
>>> m
homogenization: {SX: null}
phase: {Ferrite: null, Martensite: null}
material:
  - constituents:
      - phase: Ferrite
        O: [0.0047, -0.9582, 0.1084, 0.2645]
        v: 1.0
    homogenization: SX
  - constituents:
      - phase: Martensite
        O: [0.9147, -0.1907, 0.2901, -0.2068]
        v: 1.0
    homogenization: SX
  - constituents:
      - phase: Ferrite
        O: [0.1068, -0.4427, 0.1369, 0.8797]
        v: 1.0
    homogenization: SX

Create five materials that each approximate a duplex stainless steel microstructure with three austenite and one relatively bigger ferrite grain of random orientation each:

>>> import numpy as np
>>> import damask
>>> m = damask.ConfigMaterial()
>>> N_materials = 5
>>> m = m.material_add(phase = np.array([['Austenite']*3+['Ferrite']]),
...                    O = damask.Rotation.from_random((N_materials,4),rng_seed=20191102),
...                    v = np.array([[0.2]*3+[0.4]]),
...                    homogenization = 'Taylor')
>>> m
homogenization: {Taylor: null}
phase: {Austenite: null, Ferrite: null}
material:
- constituents:
  - phase: Austenite
    v: 0.2
    O: [0.004702411137213036, -0.9582446864633862, 0.1084379916089085, 0.2645490694937509]
  - phase: Austenite
    v: 0.2
    O: [0.9147097460704486, -0.19068436891182194, 0.29014401444532145, -0.20678975501215882]
  - phase: Austenite
    v: 0.2
    O: [0.10677819003833185, -0.4427133706883004, 0.13690394495734726, 0.879693468999888]
  - phase: Ferrite
    v: 0.4
    O: [0.8664338002923555, 0.04448357787828491, -0.4945927532088464, 0.05188149461403649]
  homogenization: Taylor
- constituents:
  - phase: Austenite
    v: 0.2
    O: [0.5621873738314133, 0.0028841916095125584, -0.817023371343172, -0.1281009321680984]
  - phase: Austenite
    v: 0.2
    O: [0.1566777437467901, -0.8117282158019414, 0.5096142534839398, 0.23841707348975383]
  - phase: Austenite
    v: 0.2
    O: [0.3559036203819333, 0.1946923701552408, 0.058744995087853975, -0.9121274689178566]
  - phase: Ferrite
    v: 0.4
    O: [0.467387781713959, -0.35644325887489176, 0.8031986430613528, 0.09679258489963502]
  homogenization: Taylor
- constituents:
  - phase: Austenite
    v: 0.2
    O: [0.4399087544327661, 0.12802483830067418, -0.8257167208737983, 0.32906203886337354]
  - phase: Austenite
    v: 0.2
    O: [0.12410381094181624, -0.5125024631828828, -0.8493860709598213, 0.021972068647108236]
  - phase: Austenite
    v: 0.2
    O: [0.03909373022192218, 0.4596226773046959, 0.42809626138739537, 0.7771436583738773]
  - phase: Ferrite
    v: 0.4
    O: [0.737821660605232, 0.38809925187040367, -0.012129167758963711, 0.5521331824196455]
  homogenization: Taylor
- constituents:
  - phase: Austenite
    v: 0.2
    O: [0.4924738838478857, -0.0534798919571679, -0.6570981342247908, 0.5681825559468784]
  - phase: Austenite
    v: 0.2
    O: [0.13073521303792138, 0.2534173177988532, -0.9582490914178947, -0.021133998872519554]
  - phase: Austenite
    v: 0.2
    O: [0.1633346595899539, 0.6775968809652247, -0.07127256805012916, -0.71351557581203]
  - phase: Ferrite
    v: 0.4
    O: [0.7658044627436773, -0.5327872540278646, 0.1102330397070761, 0.34282640467772235]
  homogenization: Taylor
- constituents:
  - phase: Austenite
    v: 0.2
    O: [0.25814496892598815, -0.6159961898524933, -0.5080223627084379, 0.543896265930874]
  - phase: Austenite
    v: 0.2
    O: [0.8497433829153472, 0.4264182767672584, 0.05570674517418605, -0.3049596612218108]
  - phase: Austenite
    v: 0.2
    O: [0.5146112784760113, 0.529467219604771, 0.661078636611197, 0.13347183839881469]
  - phase: Ferrite
    v: 0.4
    O: [0.18430893147208752, 0.012407731059331692, -0.5551804816056372, -0.8109567798802285]
  homogenization: Taylor
clear() None.  Remove all items from D.#
copy()#

Return deepcopy(self).

Create deep copy.

delete(keys)#

Remove configuration keys.

Parameters:
keysiterable or scalar

Label of the key(s) to remove.

Returns:
updateddamask.YAML

Updated configuration.

fromkeys(iterable, value=None, /)#

Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)#

Return the value for key if key is in the dictionary, else default.

items() a set-like object providing a view on D's items#
keys() a set-like object providing a view on D's keys#
classmethod load(fname)#

Load from YAML file.

Parameters:
fnamefile, str, or pathlib.Path

Filename or file to read.

Returns:
loadeddamask.YAML

YAML from file.

pop(key, default=<unrepresentable>, /)#

If key is not found, default is returned if given, otherwise KeyError is raised

popitem(/)#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

save(fname, **kwargs)#

Save to YAML file.

Parameters:
fnamefile, str, or pathlib.Path

Filename or file to write.

**kwargsdict

Keyword arguments parsed to yaml.dump.

setdefault(key, default=None, /)#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E, ]**F) None.  Update D from dict/iterable E and F.#

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values() an object providing a view on D's values#

GeomGrid#

class damask.GeomGrid(material, size, origin=array([0., 0., 0.]), initial_conditions=None, comments=None)[source]#

Geometry definition for grid solvers.

Create and manipulate geometry definitions for storage as VTK ImageData files (‘.vti’ extension). A grid has a physical size, a coordinate origin, and contains the material ID (indexing an entry in ‘material.yaml’) as well as initial condition fields.

Attributes:
N_materials

Number of (unique) material indices within grid.

cells

Cell counts along x,y,z direction.

initial_conditions

Fields of initial conditions.

material

Material indices.

origin

Vector to grid origin in meter.

size

Edge lengths of grid in meter.

Methods

add_primitive(dimension, center, exponent[, ...])

Insert a primitive geometric object at a given position.

assemble(idx)

Assemble new grid from index map.

canvas([cells, offset, fill])

Crop or enlarge/pad grid.

clean([distance, selection, ...])

Smooth grid by selecting most frequent material ID within given stencil at each location.

copy()

Return deepcopy(self).

flip(directions)

Flip grid along given directions.

from_Laguerre_tessellation(cells, size, ...)

Create grid from Laguerre tessellation.

from_Voronoi_tessellation(cells, size, seeds)

Create grid from Voronoi tessellation.

from_minimal_surface(cells, size, surface[, ...])

Create grid from definition of triply-periodic minimal surface.

from_table(table, coordinates, labels)

Create grid from ASCII table.

get_grain_boundaries([periodic, directions])

Create VTK unstructured grid containing grain boundaries.

load(fname)

Load from VTK ImageData file with material IDs stored as 'material'.

load_ASCII(fname)

Load from geom file.

load_DREAM3D(fname[, feature_IDs, ...])

Load DREAM.3D (HDF5) file.

load_Neper(fname)

Load from Neper VTK file.

load_SPPARKS(fname)

Load from SPPARKS VTK dump.

mirror(directions[, reflect])

Mirror grid along given directions.

renumber()

Renumber sorted material indices as 0,...,N-1.

rotate(R[, fill])

Rotate grid (possibly extending its bounding box).

save(fname[, compress])

Save as VTK ImageData file.

save_ASCII(fname)

Save as geom file.

scale(cells)

Scale grid to new cell counts.

show([colormap])

Show on screen.

sort()

Sort material indices such that min(material ID) is located at (0,0,0).

substitute(from_material, to_material)

Substitute material indices.

vicinity_offset([distance, offset, ...])

Offset material ID of points in the vicinity of selected (or just other) material IDs.

copy()#

Return deepcopy(self).

Create deep copy.

property material#

Material indices.

property size#

Edge lengths of grid in meter.

property origin#

Vector to grid origin in meter.

property initial_conditions#

Fields of initial conditions.

property cells#

Cell counts along x,y,z direction.

property N_materials#

Number of (unique) material indices within grid.

static load(fname)[source]#

Load from VTK ImageData file with material IDs stored as ‘material’.

Parameters:
fnamestr or pathlib.Path

GeomGrid file to read. Valid extension is .vti, which will be appended if not given.

Returns:
loadeddamask.GeomGrid

Grid-based geometry from file.

static load_SPPARKS(fname)[source]#

Load from SPPARKS VTK dump.

Parameters:
fnamestr or pathlib.Path

SPPARKS VTK dump file to read. Valid extension is .vti, which will be appended if not given.

Returns:
loadeddamask.GeomGrid

Grid-based geometry from file.

Notes

A SPPARKS VTI dump is equivalent to a DAMASK VTI file, but stores the materialID information as ‘Spin’ rather than ‘material’.

static load_ASCII(fname)[source]#

Load from geom file.

Storing geometry files in ASCII format is deprecated. This function will be removed in a future version of DAMASK.

Parameters:
fnamestr, pathlib.Path, or file handle

Geometry file to read.

Returns:
loadeddamask.GeomGrid

Grid-based geometry from file.

static load_Neper(fname)[source]#

Load from Neper VTK file.

Parameters:
fnamestr or pathlib.Path

Geometry file to read.

Returns:
loadeddamask.GeomGrid

Grid-based geometry from file.

Notes

Material indices in Neper usually start at 1 unless a buffer material with index 0 is added.

Examples

Read a periodic polycrystal generated with Neper.

>>> import damask
>>> N_grains = 20
>>> cells = (32,32,32)
>>> damask.util.run(f'neper -T -n {N_grains} -tesrsize {cells[0]}:{cells[1]}:{cells[2]} -periodicity all -format vtk')
running 'neper -T -n 20 -tesrsize 32:32:32 -periodicity all -format vtk' ...
>>> damask.GeomGrid.load_Neper(f'n{N_grains}-id1.vtk').renumber()
cells:  32 × 32 × 32
size:   1.0 × 1.0 × 1.0 m³
origin: 0.0   0.0   0.0 m
# materials: 20
static load_DREAM3D(fname, feature_IDs=None, cell_data=None, phases='Phases', Euler_angles='EulerAngles', base_group=None)[source]#

Load DREAM.3D (HDF5) file.

Data in DREAM.3D files can be stored per cell (‘CellData’) and/or per grain (‘Grain Data’). Per default, i.e. if ‘feature_IDs’ is None, cell-wise data is assumed.

Parameters:
fnamestr or pathlib.Path

Filename of the DREAM.3D (HDF5) file.

feature_IDsstr, optional

Name of the dataset containing the mapping between cells and grain-wise data. Defaults to ‘None’, in which case cell-wise data is used.

cell_datastr, optional

Name of the group (folder) containing cell-wise data. Defaults to None in wich case it is automatically detected.

phasesstr, optional

Name of the dataset containing the phase ID. It is not used for grain-wise data, i.e. when feature_IDs is not None. Defaults to ‘Phases’.

Euler_anglesstr, optional

Name of the dataset containing the crystallographic orientation as Euler angles in radians It is not used for grain-wise data, i.e. when feature_IDs is not None. Defaults to ‘EulerAngles’.

base_groupstr, optional

Path to the group (folder) that contains geometry (_SIMPL_GEOMETRY), and grain- or cell-wise data. Defaults to None, in which case it is set as the path that contains _SIMPL_GEOMETRY/SPACING.

Returns:
loadeddamask.GeomGrid

Grid-based geometry from file.

Notes

A grain-wise geometry definition is based on segmented data from the DREAM.3D file. This data is typically available when the microstructure was synthetically created. In cell-wise representations, cells having the same orientation and phase are grouped. Since synthetically created microstructures have typically no in-grain scatter, cell-wise grids can appear to be segmented.

damask.ConfigMaterial.load_DREAM3D creates the corresponding material definition. Since the numbering of materials in cell-wise and grain-wise grids is different, it is imperative to use the same mode for both load_DREAM3D functions. That means, if the “feature_IDs” argument is used for this function, the correct material configuration is only obtained if the “grain_data” argument is used when calling damask.ConfigMaterial.load_DREAM3D.

static from_table(table, coordinates, labels)[source]#

Create grid from ASCII table.

Parameters:
tabledamask.Table

Table that contains material information.

coordinatesstr

Label of the vector column containing the spatial coordinates. Need to be ordered (1./x fast, 3./z slow).

labels(sequence of) str

Label(s) of the columns containing the material definition. Each unique combination of values results in one material ID.

Returns:
newdamask.GeomGrid

Grid-based geometry from values in table.

static from_Laguerre_tessellation(cells, size, seeds, weights, material=None, periodic=True)[source]#

Create grid from Laguerre tessellation.

Parameters:
cellssequence of int, len (3)

Cell counts along x,y,z direction.

sizesequence of float, len (3)

Edge lengths of the grid in meter.

seedsnumpy.ndarray of float, shape (:,3)

Position of the seed points in meter. All points need to lay within the box [(0,0,0),size].

weightssequence of float, len (seeds.shape[0])

Weights of the seeds. Setting all weights to 1.0 gives a standard Voronoi tessellation.

materialsequence of int, len (seeds.shape[0]), optional

Material ID of the seeds. Defaults to None, in which case materials are consecutively numbered.

periodicbool, optional

Assume grid to be periodic. Defaults to True.

Returns:
newdamask.GeomGrid

Grid-based geometry from tessellation.

static from_Voronoi_tessellation(cells, size, seeds, material=None, periodic=True)[source]#

Create grid from Voronoi tessellation.

Parameters:
cellssequence of int, len (3)

Cell counts along x,y,z direction.

sizesequence of float, len (3)

Edge lengths of the grid in meter.

seedsnumpy.ndarray of float, shape (:,3)

Position of the seed points in meter. All points need to lay within the box [(0,0,0),size].

materialsequence of int, len (seeds.shape[0]), optional

Material ID of the seeds. Defaults to None, in which case materials are consecutively numbered.

periodicbool, optional

Assume grid to be periodic. Defaults to True.

Returns:
newdamask.GeomGrid

Grid-based geometry from tessellation.

static from_minimal_surface(cells, size, surface, threshold=0.0, periods=1, materials=(0, 1))[source]#

Create grid from definition of triply-periodic minimal surface.

Parameters:
cellssequence of int, len (3)

Cell counts along x,y,z direction.

sizesequence of float, len (3)

Edge lengths of the grid in meter.

surfacestr

Type of the minimal surface. See notes for details.

thresholdfloat, optional.

Threshold of the minimal surface. Defaults to 0.0.

periodsinteger, optional.

Number of periods per unit cell. Defaults to 1.

materialssequence of int, len (2)

Material IDs. Defaults to (0,1).

Returns:
newdamask.GeomGrid

Grid-based geometry from definition of minimal surface.

Notes

The following triply-periodic minimal surfaces are implemented:
  • Schwarz P

  • Double Primitive

  • Schwarz D

  • Complementary D

  • Double Diamond

  • Dprime

  • Gyroid

  • Gprime

  • Karcher K

  • Lidinoid

  • Neovius

  • Fisher-Koch S

References

S.B.G. Blanquer et al., Biofabrication 9(2):025001, 2017 https://doi.org/10.1088/1758-5090/aa6553

M. Wohlgemuth et al., Macromolecules 34(17):6083-6089, 2001 https://doi.org/10.1021/ma0019499

M.-T. Hsieh and L. Valdevit, Software Impacts 6:100026, 2020 https://doi.org/10.1016/j.simpa.2020.100026

Examples

Minimal surface of ‘Gyroid’ type.

>>> import numpy as np
>>> import damask
>>> damask.GeomGrid.from_minimal_surface([64]*3,np.ones(3)*1.e-4,'Gyroid')
cells:  64 × 64 × 64
size:   0.0001 × 0.0001 × 0.0001 m³
origin: 0.0   0.0   0.0 m
# materials: 2

Minimal surface of ‘Neovius’ type with specific material IDs.

>>> import numpy as np
>>> import damask
>>> damask.GeomGrid.from_minimal_surface([80]*3,np.ones(3)*5.e-4,
...                                  'Neovius',materials=(1,5))
cells:  80 × 80 × 80
size:   0.0005 × 0.0005 × 0.0005 m³
origin: 0.0   0.0   0.0 m
# materials: 2 (min: 1, max: 5)
save(fname, compress=True)[source]#

Save as VTK ImageData file.

Parameters:
fnamestr or pathlib.Path

Filename to write. Valid extension is .vti, which will be appended if not given.

compressbool, optional

Compress with zlib algorithm. Defaults to True.

save_ASCII(fname)[source]#

Save as geom file.

Storing geometry files in ASCII format is deprecated. This function will be removed in a future version of DAMASK.

Parameters:
fnamestr or file handle

Geometry file to write with extension ‘.geom’.

compressbool, optional

Compress geometry using ‘x of y’ and ‘a to b’.

show(colormap='cividis')[source]#

Show on screen.

Parameters:
colormapdamask.Colormap or str, optional

Colormap for visualization of material IDs. Defaults to ‘cividis’.

canvas(cells=None, offset=None, fill=None)[source]#

Crop or enlarge/pad grid.

Parameters:
cellssequence of int, len (3), optional

Cell counts along x,y,z direction.

offsetsequence of int, len (3), optional

Offset (measured in cells) from old to new grid. Defaults to [0,0,0].

fillint, optional

Material ID to fill the background. Defaults to material.max()+1.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

Examples

Remove lower 1/2 of the microstructure in z-direction.

>>> import numpy as np
>>> import damask
>>> g = damask.GeomGrid(np.zeros([32]*3,int),np.ones(3)*1e-3)
>>> g.canvas([32,32,16],[0,0,16])
cells:  32 × 32 × 16
size:   0.001 × 0.001 × 0.0005 m³
origin: 0.0   0.0   0.0005 m
# materials: 1
mirror(directions, reflect=False)[source]#

Mirror grid along given directions.

Parameters:
directions(sequence of) {‘x’, ‘y’, ‘z’}

Direction(s) along which the grid is mirrored.

reflectbool, optional

Reflect (include) outermost layers. Defaults to False.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

Examples

Mirror along y-direction.

>>> import numpy as np
>>> import damask
>>> (g := damask.GeomGrid(np.arange(4*5*6).reshape([4,5,6]),np.ones(3)))
cells:  4 × 5 × 6
size:   1.0 × 1.0 × 1.0 m³
origin: 0.0   0.0   0.0 m
# materials: 120
>>> g.mirror('y')
cells:  4 × 8 × 6
size:   1.0 × 1.6 × 1.0 m³
origin: 0.0   0.0   0.0 m
# materials: 120

Reflect along x- and y-direction.

>>> g.mirror('xy',reflect=True)
cells:  8 × 10 × 6
size:   2.0 × 2.0 × 1.0 m³
origin: 0.0   0.0   0.0 m
# materials: 120

Independence of mirroring order.

>>> g.mirror('xy') == g.mirror(['y','x'])
True
flip(directions)[source]#

Flip grid along given directions.

Parameters:
directions(sequence of) {‘x’, ‘y’, ‘z’}

Direction(s) along which the grid is flipped.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

Examples

Invariance of flipping order.

>>> import numpy as np
>>> import damask
>>> (g := damask.GeomGrid(np.arange(4*5*6).reshape([4,5,6]),np.ones(3)))
cells:  4 × 5 × 6
size:   1.0 × 1.0 × 1.0 m³
origin: 0.0   0.0   0.0 m
# materials: 120
>>> g.flip('xyz') == g.flip(['x','z','y'])
True

Invariance of flipping a (fully) mirrored grid.

>>> g.mirror('x',True) == g.mirror('x',True).flip('x')
True
rotate(R, fill=None)[source]#

Rotate grid (possibly extending its bounding box).

Parameters:
Rdamask.Rotation

Rotation to apply to the grid.

fillint, optional

Material ID to fill enlarged bounding box. Defaults to material.max()+1.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

Examples

Rotation by 180° (π) is equivalent to twice flipping.

>>> import numpy as np
>>> import damask
>>> (g := damask.GeomGrid(np.arange(4*5*6).reshape([4,5,6]),np.ones(3)))
cells:  4 × 5 × 6
size:   1.0 × 1.0 × 1.0 m³
origin: 0.0   0.0   0.0 m
# materials: 120
>>> g.rotate(damask.Rotation.from_axis_angle([0,0,1,180],degrees=True)) == g.flip('xy')
True
scale(cells)[source]#

Scale grid to new cell counts.

Parameters:
cellssequence of int, len (3)

Cell counts along x,y,z direction.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

Examples

Double grid resolution.

>>> import numpy as np
>>> import damask
>>> (g := damask.GeomGrid(np.zeros([32]*3,int),np.ones(3)*1e-4))
cells:  32 × 32 × 32
size:   0.0001 × 0.0001 × 0.0001 m³
origin: 0.0   0.0   0.0 m
# materials: 1
>>> g.scale(g.cells*2)
cells:  64 × 64 × 64
size:   0.0001 × 0.0001 × 0.0001 m³
origin: 0.0   0.0   0.0 m
# materials: 1
assemble(idx)[source]#

Assemble new grid from index map.

Parameters:
idxnumpy.ndarray of int, shape (:,:,:) or (:,:,:,3)

GeomGrid of flat indices or coordinate indices.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry. Cell count of resulting grid matches shape of index map.

renumber()[source]#

Renumber sorted material indices as 0,…,N-1.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

substitute(from_material, to_material)[source]#

Substitute material indices.

Parameters:
from_material(sequence of) int

Material indices to be substituted.

to_material(sequence of) int

New material indices.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

sort()[source]#

Sort material indices such that min(material ID) is located at (0,0,0).

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

clean(distance=np.float64(1.7320508075688772), selection=None, invert_selection=False, periodic=True, rng_seed=None)[source]#

Smooth grid by selecting most frequent material ID within given stencil at each location.

Parameters:
distancefloat, optional

Voxel distance checked for presence of other materials. Defaults to sqrt(3).

selection(sequence of) int, optional

Material IDs to consider. Defaults to all.

invert_selectionbool, optional

Consider all material IDs except those in selection. Defaults to False.

periodicbool, optional

Assume grid to be periodic. Defaults to True.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

Notes

If multiple material IDs are most frequent within a stencil, a random choice is taken.

add_primitive(dimension, center, exponent, fill=None, R=Quaternion [1. 0. 0. 0.], inverse=False, periodic=True)[source]#

Insert a primitive geometric object at a given position.

Parameters:
dimensionsequence of int or float, len (3)

Dimension (diameter/side length) of the primitive. If given as integers, cell centers are addressed. If given as floats, physical coordinates are addressed.

centersequence of int or float, len (3)

Center of the primitive. If given as integers, cell centers are addressed. If given as floats, physical coordinates are addressed.

exponent(sequence of) float, len (3)

Exponents for the three axes. 0 gives octahedron (ǀxǀ^(2^0) + ǀyǀ^(2^0) + ǀzǀ^(2^0) < 1) 1 gives sphere (ǀxǀ^(2^1) + ǀyǀ^(2^1) + ǀzǀ^(2^1) < 1)

fillint, optional

Fill value for primitive. Defaults to material.max()+1.

Rdamask.Rotation, optional

Rotation of the primitive. Defaults to no rotation.

inversebool, optional

Retain original materials within primitive and fill outside. Defaults to False.

periodicbool, optional

Assume grid to be periodic. Defaults to True.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

Examples

Add a sphere at the center.

>>> import numpy as np
>>> import damask
>>> g = damask.GeomGrid(np.zeros([64]*3,int), np.ones(3)*1e-4)
>>> g.add_primitive(np.ones(3)*5e-5,np.ones(3)*5e-5,1)
cells:  64 × 64 × 64
size:   0.0001 × 0.0001 × 0.0001 m³
origin: 0.0   0.0   0.0 m
# materials: 2

Add a cube at the origin.

>>> import numpy as np
>>> import damask
>>> g = damask.GeomGrid(np.zeros([64]*3,int), np.ones(3)*1e-4)
>>> g.add_primitive(np.ones(3,int)*32,np.zeros(3),np.inf)
cells:  64 × 64 × 64
size:   0.0001 × 0.0001 × 0.0001 m³
origin: 0.0   0.0   0.0 m
# materials: 2
vicinity_offset(distance=np.float64(1.7320508075688772), offset=None, selection=None, invert_selection=False, periodic=True)[source]#

Offset material ID of points in the vicinity of selected (or just other) material IDs.

Trigger points are variations in material ID, i.e. grain/phase boundaries or explicitly given material IDs.

Parameters:
distancefloat, optional

Voxel distance checked for presence of other materials. Defaults to sqrt(3).

offsetint, optional

Offset (positive or negative) to tag material IDs. Defaults to material.max()+1.

selection(sequence of) int, optional

Material IDs that trigger an offset. Defaults to any other than own material ID.

invert_selectionbool, optional

Consider all material IDs except those in selection. Defaults to False.

periodicbool, optional

Assume grid to be periodic. Defaults to True.

Returns:
updateddamask.GeomGrid

Updated grid-based geometry.

get_grain_boundaries(periodic=True, directions='xyz')[source]#

Create VTK unstructured grid containing grain boundaries.

Parameters:
periodicbool, optional

Assume grid to be periodic. Defaults to True.

directions(sequence of) {‘x’, ‘y’, ‘z’}, optional

Direction(s) along which the boundaries are determined. Defaults to ‘xyz’.

Returns:
grain_boundariesdamask.VTK

VTK-based geometry of grain boundary network.


LoadcaseGrid#

class damask.LoadcaseGrid(config=None, *, solver=None, loadstep=None)[source]#

Load case for grid solver.

Attributes:
is_complete

Check for completeness.

is_valid

Check for valid file layout.

Methods

clear()

copy()

Return deepcopy(self).

delete(keys)

Remove configuration keys.

fromkeys(iterable[, value])

Create a new dictionary with keys from iterable and values set to value.

get(key[, default])

Return the value for key if key is in the dictionary, else default.

items()

keys()

load(fname)

Load from YAML file.

pop(key[, default])

If key is not found, default is returned if given, otherwise KeyError is raised

popitem(/)

Remove and return a (key, value) pair as a 2-tuple.

save(fname, **kwargs)

Save to YAML file.

setdefault(key[, default])

Insert key with a value of default if key is not in the dictionary.

update([E, ]**F)

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

save(fname, **kwargs)[source]#

Save to YAML file.

Parameters:
fnamefile, str, or pathlib.Path

Filename or file to write.

**kwargsdict

Keyword arguments parsed to yaml.dump.

clear() None.  Remove all items from D.#
copy()#

Return deepcopy(self).

Create deep copy.

delete(keys)#

Remove configuration keys.

Parameters:
keysiterable or scalar

Label of the key(s) to remove.

Returns:
updateddamask.YAML

Updated configuration.

fromkeys(iterable, value=None, /)#

Create a new dictionary with keys from iterable and values set to value.

get(key, default=None, /)#

Return the value for key if key is in the dictionary, else default.

abstract property is_complete#

Check for completeness.

abstract property is_valid#

Check for valid file layout.

items() a set-like object providing a view on D's items#
keys() a set-like object providing a view on D's keys#
classmethod load(fname)#

Load from YAML file.

Parameters:
fnamefile, str, or pathlib.Path

Filename or file to read.

Returns:
loadeddamask.YAML

YAML from file.

pop(key, default=<unrepresentable>, /)#

If key is not found, default is returned if given, otherwise KeyError is raised

popitem(/)#

Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.

setdefault(key, default=None, /)#

Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E, ]**F) None.  Update D from dict/iterable E and F.#

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values() an object providing a view on D's values#

seeds#

Functionality for generation of seed points for Voronoi or Laguerre tessellation.

damask.seeds.from_random(size, N_seeds, cells=None, rng_seed=None)[source]#

Place seeds randomly in space.

Parameters:
sizesequence of float, len (3)

Edge lengths of the seeding domain.

N_seedsint

Number of seeds.

cellssequence of int, len (3), optional.

If given, ensures that each seed results in a grain when a standard Voronoi tessellation is performed using the given grid resolution (i.e. size/cells).

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS.

Returns:
coordsnumpy.ndarray, shape (N_seeds,3)

Seed coordinates in 3D space.

damask.seeds.from_Poisson_disc(size, N_seeds, N_candidates, distance, periodic=True, rng_seed=None)[source]#

Place seeds following a Poisson disc distribution.

Parameters:
sizesequence of float, len (3)

Edge lengths of the seeding domain.

N_seedsint

Number of seeds.

N_candidatesint

Number of candidates to consider for finding best candidate.

distancefloat

Minimum acceptable distance to other seeds.

periodicbool, optional

Calculate minimum distance for periodically repeated grid. Defaults to True.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS.

Returns:
coordsnumpy.ndarray, shape (N_seeds,3)

Seed coordinates in 3D space.

damask.seeds.from_grid(grid, selection=None, invert_selection=False, average=False, periodic=True)[source]#

Create seeds from grid description.

Parameters:
griddamask.GeomGrid

Grid from which the material IDs are used as seeds.

selection(sequence of) int, optional

Material IDs to consider.

invert_selectionbool, optional

Consider all material IDs except those in selection. Defaults to False.

averagebool, optional

Seed corresponds to center of gravity of material ID cloud. Defaults to False.

periodicbool, optional

Center of gravity accounts for periodic boundaries. Defaults to True.

Returns:
coords, materialsnumpy.ndarray, shape (:,3); numpy.ndarray, shape (:)

Seed coordinates in 3D space, material IDs.

Notes

The origin is not considered in order to obtain coordinates in a coordinate system located at the origin. This is expected by damask.GeomGrid.from_Voronoi_tessellation.

Examples

Recreate seeds from Voronoi tessellation.

>>> import numpy as np
>>> import scipy.spatial
>>> import damask
>>> seeds = damask.seeds.from_random(np.ones(3),29,[128]*3,rng_seed=20191102)
>>> (g := damask.GeomGrid.from_Voronoi_tessellation([128]*3,np.ones(3),seeds))
cells:  128 × 128 × 128
size:   1.0 × 1.0 × 1.0 m³
origin: 0.0   0.0   0.0 m
# materials: 29
>>> COG,matID = damask.seeds.from_grid(g,average=True)
>>> distance,ID = scipy.spatial.KDTree(COG,boxsize=g.size).query(seeds)
>>> np.max(distance) / np.linalg.norm(g.size/g.cells)
10.1
>>> (ID == matID).all()
True

Rotation#

class damask.Rotation(rotation=array([1., 0., 0., 0.]))[source]#

Rotation with functionality for conversion between different representations.

The following conventions apply:

  • Coordinate frames are right-handed.

  • A rotation angle ω is taken to be positive for a counterclockwise rotation when viewing from the end point of the rotation axis towards the origin.

  • Rotations will be interpreted in the passive sense, i.e. as rotation of the coordinate frame.

  • P = -1 (as default).

References

D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015 https://doi.org/10.1088/0965-0393/23/8/083501

Examples

Rotate vector ‘a’ (defined in coordinate system ‘A’) to coordinates ‘b’ expressed in system ‘B’:

>>> import numpy as np
>>> import damask
>>> Q = damask.Rotation.from_random()
>>> a = np.random.rand(3)
>>> b = Q @ a
>>> np.allclose(np.dot(Q.as_matrix(),a),b)
True

Compound rotations R1 (first) and R2 (second):

>>> import numpy as np
>>> import damask
>>> R1 = damask.Rotation.from_random()
>>> R2 = damask.Rotation.from_random()
>>> R = R2 * R1
>>> np.allclose(R.as_matrix(), np.dot(R2.as_matrix(),R1.as_matrix()))
True
Attributes:
quaternion
shape
size

Methods

allclose(other[, rtol, atol, equal_nan])

Test whether all values are approximately equal to corresponding ones of other Rotation.

append(other)

Extend array along first dimension with other array(s).

apply(other)

Return self@other.

as_Euler_angles([degrees])

Represent as Bunge Euler angles.

as_Rodrigues_vector([compact])

Represent as Rodrigues–Frank vector with separate axis and angle argument.

as_axis_angle([degrees, pair])

Represent as axis–angle pair.

as_cubochoric()

Represent as cubochoric vector.

as_homochoric()

Represent as homochoric vector.

as_matrix()

Represent as rotation matrix.

as_quaternion()

Represent as unit quaternion.

average([weights])

Average along last array dimension.

broadcast_to(shape[, mode])

Broadcast array.

copy([rotation])

Return deepcopy(self).

flatten([order])

Flatten array.

from_Euler_angles(phi[, degrees])

Initialize from Bunge Euler angles.

from_ODF(weights, phi[, shape, degrees, ...])

Initialize with samples from a binned orientation distribution function (ODF).

from_Rodrigues_vector(rho[, normalize, P])

Initialize from Rodrigues–Frank vector (with angle separated from axis).

from_axis_angle(n_omega[, degrees, normalize, P])

Initialize from axis–angle pair.

from_basis(basis[, orthonormal, reciprocal])

Initialize from basis vector triplet.

from_cubochoric(x[, P])

Initialize from cubochoric vector.

from_fiber_component(crystal, sample[, ...])

Initialize with samples from a Gaussian distribution around a given direction.

from_homochoric(h[, P])

Initialize from homochoric vector.

from_matrix(R[, normalize])

Initialize from rotation matrix.

from_parallel(a, b)

Initialize from pairs of two orthogonal basis vectors.

from_quaternion(q[, accept_homomorph, ...])

Initialize from quaternion.

from_random([shape, rng_seed])

Initialize with samples from a uniform distribution.

from_spherical_component(center, sigma[, ...])

Initialize with samples from a Gaussian distribution around a given center.

isclose(other[, rtol, atol, equal_nan])

Report where values are approximately equal to corresponding ones of other Rotation.

misorientation(other)

Calculate misorientation to other Rotation.

reshape(newshape[, order])

Reshape array.

copy(rotation=None)#

Return deepcopy(self).

Create deep copy.

isclose(other, rtol=1e-05, atol=1e-08, equal_nan=True)[source]#

Report where values are approximately equal to corresponding ones of other Rotation.

Parameters:
otherRotation

Rotation to compare against.

rtolfloat, optional

Relative tolerance of equality.

atolfloat, optional

Absolute tolerance of equality.

equal_nanbool, optional

Consider matching NaN values as equal. Defaults to True.

Returns:
masknumpy.ndarray of bool, shape (self.shape)

Mask indicating where corresponding rotations are close.

allclose(other, rtol=1e-05, atol=1e-08, equal_nan=True)[source]#

Test whether all values are approximately equal to corresponding ones of other Rotation.

Parameters:
otherRotation

Rotation to compare against.

rtolfloat, optional

Relative tolerance of equality.

atolfloat, optional

Absolute tolerance of equality.

equal_nanbool, optional

Consider matching NaN values as equal. Defaults to True.

Returns:
answerbool

Whether all values are close between both rotations.

apply(other)#

Return self@other.

Rotate vector, second-order tensor, or fourth-order tensor. other is interpreted as an array of tensor quantities with the highest-possible order considering the shape of self. Compatible innermost dimensions will blend. For instance, shapes of (2,) and (3,3) for self and other prompt interpretation of other as a second-rank tensor and result in (2,) rotated tensors, whereas shapes of (2,1) and (3,3) for self and other result in (2,3) rotated vectors.

Parameters:
othernumpy.ndarray, shape (…,3), (…,3,3), or (…,3,3,3,3)

Vector or tensor on which to apply the rotation.

Returns:
rotatednumpy.ndarray, shape (…,3), (…,3,3), or (…,3,3,3,3)

Rotated vector or tensor, i.e. transformed to frame defined by rotation.

Examples

Application of twelve (random) rotations to a set of five vectors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(12))
>>> o = np.ones((5,3))
>>> (r@o).shape                                    # (12) @ (5, 3)
(12, 5, 3)

Application of a (random) rotation to all twelve second-rank tensors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random()
>>> o = np.ones((12,3,3))
>>> (r@o).shape                                    # (1) @ (12, 3,3)
(12, 3, 3)

Application of twelve (random) rotations to the corresponding twelve second-rank tensors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(12))
>>> o = np.ones((12,3,3))
>>> (r@o).shape                                    # (12) @ (3,3)
(12, 3, 3)

Application of each of three (random) rotations to all three vectors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(3))
>>> o = np.ones((3,3))
>>> (r[...,np.newaxis]@o[np.newaxis,...]).shape    # (3,1) @ (1,3, 3)
(3, 3, 3)

Application of twelve (random) rotations to all twelve second-rank tensors.

>>> import numpy as np
>>> import damask
>>> r = damask.Rotation.from_random(shape=(12))
>>> o = np.ones((12,3,3))
>>> (r@o[np.newaxis,...]).shape                    # (12) @ (1,12, 3,3)
(12, 12, 3, 3)
append(other)[source]#

Extend array along first dimension with other array(s).

Parameters:
other(list of) damask.Rotation
flatten(order='C')[source]#

Flatten array.

Parameters:
order{‘C’, ‘F’, ‘A’}, optional

‘C’ flattens in row-major (C-style) order. ‘F’ flattens in column-major (Fortran-style) order. ‘A’ flattens in column-major order if object is Fortran contiguous in memory, row-major order otherwise. Defaults to ‘C’.

Returns:
flatteneddamask.Rotation

Rotation flattened to single dimension.

reshape(newshape, order='C')[source]#

Reshape array.

Parameters:
newshape(sequence of) int

The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length.

order{‘C’, ‘F’, ‘A’}, optional

‘C’ flattens in row-major (C-style) order. ‘F’ flattens in column-major (Fortran-style) order. ‘A’ flattens in column-major order if object is Fortran contiguous in memory, row-major order otherwise. Defaults to ‘C’.

Returns:
reshapeddamask.Rotation

Rotation of given shape.

broadcast_to(shape, mode='right')[source]#

Broadcast array.

Parameters:
shape(sequence of) int

Shape of broadcasted array, needs to be compatible with the original shape.

modestr, optional

Where to preferentially locate missing dimensions. Either ‘left’ or ‘right’ (default).

Returns:
broadcasteddamask.Rotation

Rotation broadcasted to given shape.

average(weights=None)[source]#

Average along last array dimension.

Parameters:
weightsnumpy.ndarray, shape (self.shape), optional

Relative weight of each rotation.

Returns:
averagedamask.Rotation

Weighted average of original Rotation field.

References

F. Landis Markley et al., Journal of Guidance, Control, and Dynamics 30(4):1193-1197, 2007 https://doi.org/10.2514/1.28949

misorientation(other)[source]#

Calculate misorientation to other Rotation.

Parameters:
otherdamask.Rotation

Rotation to which the misorientation is computed. Compatible innermost dimensions will blend.

Returns:
gdamask.Rotation

Misorientation.

as_quaternion()[source]#

Represent as unit quaternion.

Returns:
qnumpy.ndarray, shape (…,4)

Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1, q_0 ≥ 0.

as_Euler_angles(degrees=False)[source]#

Represent as Bunge Euler angles.

Parameters:
degreesbool, optional

Return angles in degrees. Defaults to False.

Returns:
phinumpy.ndarray, shape (…,3)

Bunge Euler angles (φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]) or (φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True.

Notes

Bunge Euler angles correspond to a rotation axis sequence of z–x’–z’’.

Examples

Cube orientation as Bunge Euler angles.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_Euler_angles()
array([0., 0., 0.])
as_axis_angle(degrees=False, pair=False)[source]#

Represent as axis–angle pair.

Parameters:
degreesbool, optional

Return rotation angle in degrees. Defaults to False.

pairbool, optional

Return tuple of axis and angle. Defaults to False.

Returns:
n_omeganumpy.ndarray, shape (…,4) or tuple ((…,3), (…)) if pair == True

Axis and angle [n_1, n_2, n_3, ω] with ǀnǀ = 1 and ω ∈ [0,π] or ω ∈ [0,180] if degrees == True.

Examples

Cube orientation as axis–angle pair.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_axis_angle(pair=True)
(array([0., 0., 1.]), array(0.))
as_matrix()[source]#

Represent as rotation matrix.

Returns:
Rnumpy.ndarray, shape (…,3,3)

Rotation matrix R with det(R) = 1, R.T ∙ R = I.

Examples

Cube orientation as rotation matrix.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_matrix()
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])
as_Rodrigues_vector(compact=False)[source]#

Represent as Rodrigues–Frank vector with separate axis and angle argument.

Parameters:
compactbool, optional

Return three-component Rodrigues–Frank vector, i.e. axis and angle argument are not separated.

Returns:
rhonumpy.ndarray, shape (…,4) or (…,3) if compact == True

Rodrigues–Frank vector [n_1, n_2, n_3, tan(ω/2)] with ǀnǀ = 1 and ω ∈ [0,π] or [n_1, n_2, n_3] with ǀnǀ = tan(ω/2) and ω ∈ [0,π] if compact == True.

Examples

Cube orientation as three-component Rodrigues–Frank vector.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_Rodrigues_vector(compact=True)
array([ 0.,  0., 0.])
as_homochoric()[source]#

Represent as homochoric vector.

Returns:
hnumpy.ndarray, shape (…,3)

Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).

Examples

Cube orientation as homochoric vector.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_homochoric()
array([0., 0., 0.])
as_cubochoric()[source]#

Represent as cubochoric vector.

Returns:
xnumpy.ndarray, shape (…,3)

Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).

Examples

Cube orientation as cubochoric vector.

>>> import damask
>>> damask.Rotation([1,0,0,0]).as_cubochoric()
array([0., 0., 0.])
static from_quaternion(q, accept_homomorph=False, normalize=False, P=-1)[source]#

Initialize from quaternion.

Parameters:
qnumpy.ndarray, shape (…,4)

Unit quaternion (q_0, q_1, q_2, q_3) in positive real hemisphere, i.e. ǀqǀ = 1 and q_0 ≥ 0.

accept_homomorphbool, optional

Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere). Defaults to False.

normalize: bool, optional

Allow ǀqǀ ≠ 1. Defaults to False.

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

Returns:
newdamask.Rotation

Examples

>>> import damask
>>> damask.Rotation.from_quaternion([[1,0,0,0],[0,1,0,0]])
Quaternions of shape (2,)
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]]
static from_Euler_angles(phi, degrees=False)[source]#

Initialize from Bunge Euler angles.

Parameters:
phinumpy.ndarray, shape (…,3)

Euler angles (φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]) or (φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]) if degrees == True.

degreesbool, optional

Euler angles are given in degrees. Defaults to False.

Returns:
newdamask.Rotation

Notes

Bunge Euler angles correspond to a rotation axis sequence of z–x’–z’’.

Examples

>>> import damask
>>> damask.Rotation.from_Euler_angles([180,0,0],degrees=True)
Quaternion [0. 0. 0. 1.]
static from_axis_angle(n_omega, degrees=False, normalize=False, P=-1)[source]#

Initialize from axis–angle pair.

Parameters:
n_omeganumpy.ndarray, shape (…,4)

Axis and angle (n_1, n_2, n_3, ω) with ǀnǀ = 1 and ω ∈ [0,π] or ω ∈ [0,180] if degrees == True.

degreesbool, optional

Angle ω is given in degrees. Defaults to False.

normalize: bool, optional

Allow ǀnǀ ≠ 1. Defaults to False.

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

Returns:
newdamask.Rotation

Examples

>>> import damask
>>> damask.Rotation.from_axis_angle([[0,0,1,90],[1,0,0,90]],degrees=True)
Quaternions of shape (2,)
[[0.707 0.    0.    0.707]
 [0.707 0.707 0.    0.   ]]
static from_basis(basis, orthonormal=True, reciprocal=False)[source]#

Initialize from basis vector triplet.

Parameters:
basisnumpy.ndarray, shape (…,3,3)

Three three-dimensional basis vectors.

orthonormalbool, optional

Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.

reciprocalbool, optional

Basis vectors are given in reciprocal (instead of real) space. Defaults to False.

Returns:
newdamask.Rotation
static from_matrix(R, normalize=False)[source]#

Initialize from rotation matrix.

Parameters:
Rnumpy.ndarray, shape (…,3,3)

Rotation matrix with det(R) = 1 and R.T ∙ R = I.

normalizebool, optional

Rescales rotation matrix to unit determinant. Defaults to False.

Returns:
newdamask.Rotation

Examples

>>> import damask
>>> damask.Rotation.from_matrix([[1,0,0],[0,0,-1],[0,1,0]])
Quaternion [ 0.707 -0.707 0.  0. ]
static from_parallel(a, b)[source]#

Initialize from pairs of two orthogonal basis vectors.

Parameters:
anumpy.ndarray, shape (…,2,3)

Two three-dimensional vectors of first orthogonal basis.

bnumpy.ndarray, shape (…,2,3)

Corresponding three-dimensional vectors of second basis.

Returns:
newdamask.Rotation

Examples

>>> import damask
>>> damask.Rotation.from_parallel([[2,0,0],[0,1,0]],[[1,0,0],[0,2,0]])
Quaternion [1. 0. 0. 0.]
static from_Rodrigues_vector(rho, normalize=False, P=-1)[source]#

Initialize from Rodrigues–Frank vector (with angle separated from axis).

Parameters:
rhonumpy.ndarray, shape (…,4)

Rodrigues–Frank vector (n_1, n_2, n_3, tan(ω/2)) with ǀnǀ = 1 and ω ∈ [0,π].

normalizebool, optional

Allow ǀnǀ ≠ 1. Defaults to False.

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

Returns:
newdamask.Rotation

Examples

>>> import damask
>>> damask.Rotation.from_Rodrigues_vector([0,0,1,1])
Quaternion [0.707 0.    0.    0.707]
static from_homochoric(h, P=-1)[source]#

Initialize from homochoric vector.

Parameters:
hnumpy.ndarray, shape (…,3)

Homochoric vector (h_1, h_2, h_3) with ǀhǀ < (3/4*π)^(1/3).

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

Returns:
newdamask.Rotation
static from_cubochoric(x, P=-1)[source]#

Initialize from cubochoric vector.

Parameters:
xnumpy.ndarray, shape (…,3)

Cubochoric vector (x_1, x_2, x_3) with max(x_i) < 1/2*π^(2/3).

Pint ∈ {-1,1}, optional

Sign convention. Defaults to -1.

Returns:
newdamask.Rotation
static from_random(shape=None, rng_seed=None)[source]#

Initialize with samples from a uniform distribution.

Parameters:
shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

Returns:
newdamask.Rotation
static from_ODF(weights, phi, shape=None, degrees=False, fractions=True, rng_seed=None)[source]#

Initialize with samples from a binned orientation distribution function (ODF).

Parameters:
weightsnumpy.ndarray, shape (n)

Texture intensity values (probability density or volume fraction) at Euler space grid points.

phinumpy.ndarray, shape (n,3)

Grid coordinates in Euler space at which weights are defined.

shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

degreesbool, optional

Euler space grid coordinates are in degrees. Defaults to True.

fractionsbool, optional

ODF values correspond to volume fractions, not probability densities. Defaults to True.

rng_seed: {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

Returns:
newdamask.Rotation

Notes

Due to the distortion of Euler space in the vicinity of ϕ = 0, probability densities, p, defined on grid points with ϕ = 0 will never result in reconstructed orientations as their dV/V = p dγ = p × 0. Hence, it is recommended to transform any such dataset to a cell-centered version, which avoids grid points at ϕ = 0.

References

P. Eisenlohr and F. Roters, Computational Materials Science 42(4):670-678, 2008 https://doi.org/10.1016/j.commatsci.2007.09.015

static from_spherical_component(center, sigma, shape=None, degrees=False, rng_seed=None)[source]#

Initialize with samples from a Gaussian distribution around a given center.

Parameters:
centerRotation or Orientation

Central rotation.

sigmafloat

Standard deviation of (Gaussian) misorientation distribution.

shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

degreesbool, optional

sigma is given in degrees. Defaults to False.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

Examples

Create a brass texture consisting of 200 orientations:

>>> import damask
>>> center = damask.Rotation.from_Euler_angles([35.,45.,0.],degrees=True)
>>> brass = damask.Rotation.from_spherical_component(center=center,sigma=3.,shape=200,degrees=True)

Create a Goss texture consisting of 100 orientations:

>>> import damask
>>> center = damask.Rotation.from_Euler_angles([0.,45.,0.],degrees=True)
>>> goss = damask.Rotation.from_spherical_component(center=center,sigma=3.,shape=100,degrees=True)
static from_fiber_component(crystal, sample, sigma=0.0, shape=None, degrees=False, rng_seed=None)[source]#

Initialize with samples from a Gaussian distribution around a given direction.

Parameters:
crystalnumpy.ndarray, shape (2)

Polar coordinates (polar angle θ from [0 0 1], azimuthal angle φ from [1 0 0]) of fiber direction in crystal frame.

samplenumpy.ndarray, shape (2)

Polar coordinates (polar angle θ from z, azimuthal angle φ from x) of fiber direction in sample frame.

sigmafloat, optional

Standard deviation of (Gaussian) misorientation distribution. Defaults to 0.

shape(sequence of) int, optional

Output shape. Defaults to None, which gives a scalar.

degreesbool, optional

sigma and polar coordinates are given in degrees. Defaults to False.

rng_seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy will be pulled from the OS.

Returns:
newdamask.Rotation

Notes

The crystal direction for (θ=0,φ=0) is [0 0 1], the sample direction for (θ=0,φ=0) is z.

Polar coordinates follow the ISO 80000-2:2019 convention typically used in physics. See https://en.wikipedia.org/wiki/Spherical_coordinate_system.

Ranges 0≤θ≤π and 0≤φ≤2π give a unique set of coordinates.

Examples

Create an ideal α-fiber texture (<1 1 0> ǀǀ RD=x) consisting of 200 orientations:

>>> import damask
>>> import numpy as np
>>> alpha = damask.Rotation.from_fiber_component([np.pi/4.,0.],[np.pi/2.,0.],shape=200)

Create an ideal γ-fiber texture (<1 1 1> ǀǀ ND=z) consisting of 100 orientations:

>>> import damask
>>> gamma = damask.Rotation.from_fiber_component([54.7,45.],[0.,0.],shape=100,degrees=True)