Source code for damask.seeds

"""Functionality for generation of seed points for Voronoi or Laguerre tessellation."""

from typing import Optional as _Optional, Tuple as _Tuple

from scipy import spatial as _spatial
import numpy as _np

from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence, \
                        NumpyRngSeed as _NumpyRngSeed
from . import util as _util
from . import grid_filters as _grid_filters


[docs] def from_random(size: _FloatSequence, N_seeds: int, cells: _Optional[_IntSequence] = None, rng_seed: _Optional[_NumpyRngSeed] = None) -> _np.ndarray: """ Place seeds randomly in space. Parameters ---------- size : sequence of float, len (3) Edge lengths of the seeding domain. N_seeds : int Number of seeds. cells : sequence of int, len (3), optional. If given, ensures that each seed results in a grain when a standard Voronoi tessellation is performed using the given grid resolution (i.e. size/cells). rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS. Returns ------- coords : numpy.ndarray, shape (N_seeds,3) Seed coordinates in 3D space. """ size_ = _np.array(size,float) rng = _np.random.default_rng(rng_seed) if cells is None: coords = rng.random((N_seeds,3)) * size_ else: grid_coords = _grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F') coords = grid_coords[rng.choice(_np.prod(cells),N_seeds, replace=False)] \ + _np.broadcast_to(size_/_np.array(cells,_np.int64),(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble w/o leaving grid return coords
[docs] def from_Poisson_disc(size: _FloatSequence, N_seeds: int, N_candidates: int, distance: float, periodic: bool = True, rng_seed: _Optional[_NumpyRngSeed] = None) -> _np.ndarray: """ Place seeds following a Poisson disc distribution. Parameters ---------- size : sequence of float, len (3) Edge lengths of the seeding domain. N_seeds : int Number of seeds. N_candidates : int Number of candidates to consider for finding best candidate. distance : float Minimum acceptable distance to other seeds. periodic : bool, optional Calculate minimum distance for periodically repeated grid. Defaults to True. rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS. Returns ------- coords : numpy.ndarray, shape (N_seeds,3) Seed coordinates in 3D space. """ rng = _np.random.default_rng(rng_seed) coords = _np.empty((N_seeds,3)) coords[0] = rng.random(3) * _np.array(size,float) s = 1 i = 0 progress = _util.ProgressBar(N_seeds+1,'',50) while s < N_seeds: i += 1 candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3)) tree = _spatial.cKDTree(coords[:s],boxsize=size) if periodic else \ _spatial.cKDTree(coords[:s]) distances = tree.query(candidates)[0] if distances.max() > distance: # require minimum separation i = 0 coords[s] = candidates[distances.argmax()] # maximum separation to existing point cloud s += 1 progress.update(s) if i >= 100: raise ValueError('seeding not possible') return coords
[docs] def from_grid(grid, selection: _Optional[_IntSequence] = None, invert_selection: bool = False, average: bool = False, periodic: bool = True) -> _Tuple[_np.ndarray, _np.ndarray]: """ Create seeds from grid description. Parameters ---------- grid : damask.GeomGrid Grid from which the material IDs are used as seeds. selection : (sequence of) int, optional Material IDs to consider. invert_selection : bool, optional Consider all material IDs except those in selection. Defaults to False. average : bool, optional Seed corresponds to center of gravity of material ID cloud. Defaults to False. periodic : bool, optional Center of gravity accounts for periodic boundaries. Defaults to True. Returns ------- coords, materials : numpy.ndarray, shape (:,3); numpy.ndarray, shape (:) Seed coordinates in 3D space, material IDs. Notes ----- The origin is not considered in order to obtain coordinates in a coordinate system located at the origin. This is expected by damask.GeomGrid.from_Voronoi_tessellation. Examples -------- Recreate seeds from Voronoi tessellation. >>> import numpy as np >>> import scipy.spatial >>> import damask >>> seeds = damask.seeds.from_random(np.ones(3),29,[128]*3,rng_seed=20191102) >>> (g := damask.GeomGrid.from_Voronoi_tessellation([128]*3,np.ones(3),seeds)) cells: 128 × 128 × 128 size: 1.0 × 1.0 × 1.0 m³ origin: 0.0 0.0 0.0 m # materials: 29 >>> COG,matID = damask.seeds.from_grid(g,average=True) >>> distance,ID = scipy.spatial.KDTree(COG,boxsize=g.size).query(seeds) >>> np.max(distance) / np.linalg.norm(g.size/g.cells) 10.1 >>> (ID == matID).all() True """ material = grid.material.reshape((-1,1),order='F') mask = _np.full(grid.cells.prod(),True,dtype=bool) if selection is None else \ _np.isin(material,selection,invert=invert_selection).flatten() coords = _grid_filters.coordinates0_point(grid.cells,grid.size).reshape(-1,3,order='F') if not average: return (coords[mask],material[mask]) else: materials = _np.unique(material[mask]) coords_ = _np.zeros((materials.size,3),dtype=float) for i,mat in enumerate(materials): pc = 2*_np.pi*coords[material[:,0]==mat,:]/grid.size coords_[i] = grid.size / 2 / _np.pi * (_np.pi + _np.arctan2(-_np.average(_np.sin(pc),axis=0), -_np.average(_np.cos(pc),axis=0))) \ if periodic else \ _np.average(coords[material[:,0]==mat,:],axis=0) return (coords_,materials)