Source code for damask.tensor

"""
Tensor mathematics.

All routines operate on numpy.ndarrays of shape (...,3,3).

"""

import numpy as _np


[docs] def deviatoric(T: _np.ndarray) -> _np.ndarray: """ Calculate deviatoric part of a tensor. Parameters ---------- T : numpy.ndarray, shape (...,3,3) Tensor of which the deviatoric part is computed. Returns ------- T' : numpy.ndarray, shape (...,3,3) Deviatoric part of T. """ return T - spherical(T,tensor=True)
[docs] def eigenvalues(T_sym: _np.ndarray) -> _np.ndarray: """ Eigenvalues, i.e. principal components, of a symmetric tensor. Parameters ---------- T_sym : numpy.ndarray, shape (...,3,3) Symmetric tensor of which the eigenvalues are computed. Returns ------- lambda : numpy.ndarray, shape (...,3) Eigenvalues of T_sym sorted in ascending order, each repeated according to its multiplicity. """ return _np.linalg.eigvalsh(symmetric(T_sym))
[docs] def eigenvectors(T_sym: _np.ndarray, RHS: bool = False) -> _np.ndarray: """ Eigenvectors of a symmetric tensor. Parameters ---------- T_sym : numpy.ndarray, shape (...,3,3) Symmetric tensor of which the eigenvectors are computed. RHS: bool, optional Enforce right-handed coordinate system. Defaults to False. Returns ------- x : numpy.ndarray, shape (...,3,3) Eigenvectors of T_sym sorted in ascending order of their associated eigenvalues. """ _,v = _np.linalg.eigh(symmetric(T_sym)) if RHS: v[_np.linalg.det(v) < 0.0,:,2] *= -1.0 return v
[docs] def spherical(T: _np.ndarray, tensor: bool = True) -> _np.ndarray: """ Calculate spherical part of a tensor. Parameters ---------- T : numpy.ndarray, shape (...,3,3) Tensor of which the spherical part is computed. tensor : bool, optional Map spherical part onto identity tensor. Defaults to True. Returns ------- p : numpy.ndarray, shape (...,3,3) unless tensor == False: shape (...,) Spherical part of tensor T. p is an isotropic tensor. """ sph = _np.trace(T,axis2=-2,axis1=-1)/3.0 return _np.einsum('...jk,...',_np.eye(3),sph) if tensor else sph
[docs] def symmetric(T: _np.ndarray) -> _np.ndarray: """ Symmetrize tensor. Parameters ---------- T : numpy.ndarray, shape (...,3,3) Tensor of which the symmetrized values are computed. Returns ------- T_sym : numpy.ndarray, shape (...,3,3) Symmetrized tensor T. """ return (T+transpose(T))*0.5
[docs] def transpose(T: _np.ndarray) -> _np.ndarray: """ Transpose tensor. Parameters ---------- T : numpy.ndarray, shape (...,3,3) Tensor of which the transpose is computed. Returns ------- T.T : numpy.ndarray, shape (...,3,3) Transpose of tensor T. """ return _np.swapaxes(T,axis2=-2,axis1=-1)