Face-Centered Cubic (cF)#

Stiffness Matrix#

\[\begin{split}\begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ & C_{11} & C_{12} & 0 & 0 & 0 \\ & & C_{11} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & C_{44} & 0 \\ & & & & & C_{44} \end{pmatrix}\end{split}\]

Atom Arrangement#

Figure 1: Face-centered cubic lattice structure

Slip Systems#

index

slip direction

plane normal

1

\([ 0 1 \bar 1]\)

\(( 1 1 1)\)

2

\([\bar 1 0 1]\)

\(( 1 1 1)\)

3

\([ 1 \bar 1 0]\)

\(( 1 1 1)\)

4

\([ 0 \bar 1 \bar 1]\)

\((\bar 1 \bar 1 1)\)

5

\([ 1 0 1]\)

\((\bar 1 \bar 1 1)\)

6

\([\bar 1 1 0]\)

\((\bar 1 \bar 1 1)\)

7

\([ 0 \bar 1 1]\)

\(( 1 \bar 1 \bar 1)\)

8

\([\bar 1 0 \bar 1]\)

\(( 1 \bar 1 \bar 1)\)

9

\([ 1 1 0]\)

\(( 1 \bar 1 \bar 1)\)

10

\([ 0 1 1]\)

\((\bar 1 1 \bar 1)\)

11

\([ 1 0 \bar 1]\)

\((\bar 1 1 \bar 1)\)

12

\([\bar 1 \bar 1 0]\)

\((\bar 1 1 \bar 1)\)

{111} fcc slip system

Figure 2: \(\{1 1 1\}\) octahedral slip system

index

slip direction

plane normal

13

\([ 1 1 0]\)

\((1 \bar 1 0)\)

14

\([ 1 \bar 1 0]\)

\((1 1 0)\)

15

\([ 1 0 1]\)

\((1 0 \bar 1)\)

16

\([ 1 0 \bar 1]\)

\((1 0 1)\)

17

\([ 0 1 1]\)

\((0 1 \bar 1)\)

18

\([ 0 1 \bar 1]\)

\((0 1 1)\)

{110} fcc slip system

Figure 3: \(\{1 1 0\}\) non-octahedral slip system

Twin Systems#

index

slip direction

plane normal

1

\([\bar 2 1 1]\)

\(( 1 1 1)\)

2

\([ 1 \bar 2 1]\)

\(( 1 1 1)\)

3

\([ 1 1 \bar 2]\)

\(( 1 1 1)\)

4

\([ 2 \bar 1 1]\)

\((\bar 1 \bar 1 1)\)

5

\([\bar 1 2 1]\)

\((\bar 1 \bar 1 1)\)

6

\([\bar 1 \bar 1 \bar 2]\)

\((\bar 1 \bar 1 1)\)

7

\([\bar 2 \bar 1 \bar 1]\)

\(( 1 \bar 1 \bar 1)\)

8

\([ 1 2 \bar 1]\)

\(( 1 \bar 1 \bar 1)\)

9

\([ 1 \bar 1 2]\)

\(( 1 \bar 1 \bar 1)\)

10

\([ 2 1 \bar 1]\)

\((\bar 1 1 \bar 1)\)

11

\([\bar 1 \bar 2 \bar 1]\)

\((\bar 1 1 \bar 1)\)

12

\([\bar 1 1 2]\)

\((\bar 1 1 \bar 1)\)

{111} fcc twin system

Figure 4: \(\{1 1 1\}\) twin system

Cleavage Systems#

index

slip direction

plane normal

1

\([010]\)

\((100)\)

2

\([001]\)

\((010)\)

3

\([100]\)

\((001)\)

{111} fcc twin system

Figure 5: \(\{1 0 0\}\) cleavage system

Interaction Matrices#

Slip-Slip#

index

label

description

1

\(h_0^\prime\)

self interaction

2

\(h_\text{copla}\)

coplanar interaction

3

\(h_\text{coli}\)

collinear interaction

4

\(h_1\)

Hirth lock

5

\(h_2\)

glissile junction 0°

6

\(h_2^\ast\)

glissile junction 60°

7

\(h_3\)

Lomer lock

8

\(-\)

9

\(-\)

10

\(-\)

11

\(-\)

12

\(-\)

13

\(-\)

\(\{1 1 0\}\) - \(\{1 1 1\}\) collinear

  • R. Madec and L.P. Kubin. Dislocation strengthening in FCC metals and in BCC metals at high temperatures Acta Materialia, 126:166-173, 2017. doi:10.1016/j.actamat.2016.12.040.